Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries

被引:87
作者
Yu, Shicheng [1 ]
Schmohl, Sebastian [2 ]
Liu, Zigeng [1 ,3 ]
Hoffmeyer, Marija [2 ]
Schoen, Nino [1 ,4 ]
Hausen, Florian [1 ,4 ]
Tempel, Hermann [1 ]
Kungl, Hans [1 ]
Wiemhoefer, Hans-D. [2 ]
Eichel, Ruediger-A. [1 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK 9 Grundlagen Elekt, D-52425 Julich, Germany
[2] Westfalische Wilhelms Univ Munster, Inst Anorgan & Analyt Chem, D-48149 Munster, Germany
[3] Max Planck Inst Chem Energiekonvers, D-45470 Mulheim, Germany
[4] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
关键词
HIGH-RATE CAPABILITY; POLYMER ELECTROLYTES; TRANSFERENCE NUMBERS; POLYPHOSPHAZENE; CONDUCTIVITY; ANODE; FABRICATION; CHALLENGES; MORPHOLOGY; STABILITY;
D O I
10.1039/c8ta11259b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct integration of a metallic lithium anode with the ceramic Li1.3Al0.3Ti1.7(PO4)(3) (LATP) electrolyte into an all-solid-state battery is highly challenging due to their chemical and electrochemical incompatibility. Herein, a layered hybrid solid electrolyte is designed by coating the ceramic LATP electrolyte with a protective polymer electrolyte, polyphosphazene/PVDF-HFP/LiBOB. This polymer electrolyte comprises highly Li+ conductive polyphosphazene and mechanically stable PVDF-HFP as the polymer matrix, and the mobile lithium ions in the polymer layer are supplied by LiBOB. Equipped with both polymer and ceramic components, the hybrid electrolyte possesses favorable features, such as a flexible surface, high ionic conductivity, high chemical stability against lithium and wide electrochemical stability window (4.7 V), which all to help realize its application in all-solid-state lithium batteries. The prepared all-solid-state battery with a metallic lithium anode and high-voltage Li3V2(PO4)(3)/CNT cathode shows high capacity and excellent cycling performance with negligible capacity loss over 500 cycles at 50 degrees C. Furthermore, the analysis of the hybrid solid electrolyte after long-term cycling demonstrates outstanding electrode/electrolyte interfacial stability. This study suggests that use of solid organic-inorganic hybrid electrolyte is a promising approach to circumvent the mechanical, chemical and electrochemical limitations at the interface of electrodes and ceramic electrolyte for all-solid-state batteries.
引用
收藏
页码:3882 / 3894
页数:13
相关论文
共 46 条
[1]   Influence of reaction parameters on the living cationic polymerization of phosphoranimines to polyphosphazenes [J].
Allcock, HR ;
Reeves, SD ;
de Denus, CR ;
Crane, CK .
MACROMOLECULES, 2001, 34 (04) :748-754
[2]  
[Anonymous], ENERGY ENV SCI
[3]   Recent advances in inorganic solid electrolytes for lithium batteries [J].
Cao, Can ;
Li, Zhuo-Bin ;
Wang, Xiao-Liang ;
Zhao, Xin-Bing ;
Han, Wei-Qiang .
FRONTIERS IN ENERGY RESEARCH, 2014,
[4]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[5]   ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES [J].
EVANS, J ;
VINCENT, CA ;
BRUCE, PG .
POLYMER, 1987, 28 (13) :2324-2328
[6]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[7]   The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes [J].
Hiller, M. M. ;
Joost, M. ;
Gores, H. J. ;
Passerini, S. ;
Wiemhoefer, H. -D. .
ELECTROCHIMICA ACTA, 2013, 114 :21-29
[8]   High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers [J].
Huang, Yun-Hui ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2008, 20 (23) :7237-7241
[9]  
Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]
[10]   Enhanced Lithium-Ion Transport in Polyphosphazene based Gel Polymer Electrolytes [J].
Jankowski, S. ;
Hiller, Martin M. ;
Fromm, O. ;
Winter, M. ;
Wiemhoefer, H. -D. .
ELECTROCHIMICA ACTA, 2015, 155 :364-371