A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex

被引:226
作者
Mellios, Nikolaos [1 ,2 ]
Huang, Hsien-Sung [1 ,2 ]
Grigorenko, Anastasia [1 ]
Rogaev, Evgeny [1 ]
Akbarian, Schahram [1 ]
机构
[1] Brudnick Neuropsychiat Res Inst, Dept Psychiat, Worcester, MA 01604 USA
[2] Univ Massachusetts, Grad Sch Biomed Sci, Sch Med, Worcester, MA 01604 USA
关键词
D O I
10.1093/hmg/ddn201
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Expression of brain-derived neurotrophic factor (BDNF) is developmentally regulated in prefrontal cortex (PFC). The underlying molecular mechanisms, however, remain unclear. Here, we explore the role of microRNAs (miRNAs) as post-transcriptional inhibitors of BDNF. A sequential approach involving in silico, miRNA microarray, in situ hybridization and qRT -PCR studies identified a group of 10 candidate miRNAs, segregating into five miRNA families (miR-30a-5p/b/c/d, miR-103/ 107, miR-191, miR-16/ 195, miR-495), which exhibited distinct developmental and lamina-specific expression in human PFC. Luciferase assays confirmed that at least two of these miRNAs, miR-30a-5p and miR-195, target specific sequences surrounding the proximal polyadenylation site within BDNF 3'-untranslated region. Furthermore, neuronal overexpression of miR-30a-5p, a miRNA enriched in layer III pyramidal neurons, resulted in down-regulation of BDNF protein. Notably, a subset of seven miRNAs, including miR-30a-5p, exhibited an inverse correlation with BDNF protein levels in PFC of subjects age 15 -84 years. In contrast, the role of transcriptional mechanisms was more apparent during the transition from fetal to childhood and/or young adult stages, whenBDNFmRNAup-regulation was accompanied by similar changes in (open chromatin-associated) histone H3-lysine 4 methylation at BDNF gene promoters I and IV. Collectively, our data highlight the multiple layers of regulation governing the developmental expression of BDNF in human PFC and suggest that miRNAs are involved in the fine-tuning of this neurotrophin particularly in adulthood.
引用
收藏
页码:3030 / 3042
页数:13
相关论文
共 61 条
[1]   Sequence variants in SLITRK1 are associated with Tourette's syndrome [J].
Abelson, JF ;
Kwan, KY ;
O'Roak, BJ ;
Baek, DY ;
Stillman, AA ;
Morgan, TM ;
Mathews, CA ;
Pauls, DA ;
Rasin, MR ;
Gunel, M ;
Davis, NR ;
Ercan-Sencicek, AG ;
Guez, DH ;
Spertus, JA ;
Leckman, JF ;
Dure, LS ;
Kurlan, R ;
Singer, HS ;
Gilbert, DL ;
Farhi, A ;
Louvi, A ;
Lifton, RP ;
Sestan, N ;
State, MW .
SCIENCE, 2005, 310 (5746) :317-320
[2]   GENE-EXPRESSION FOR GLUTAMIC-ACID DECARBOXYLASE IS REDUCED WITHOUT LOSS OF NEURONS IN PREFRONTAL CORTEX OF SCHIZOPHRENICS [J].
AKBARIAN, S ;
KIM, JJ ;
POTKIN, SG ;
HAGMAN, JO ;
TAFAZZOLI, A ;
BUNNEY, WE ;
JONES, EG .
ARCHIVES OF GENERAL PSYCHIATRY, 1995, 52 (04) :258-266
[3]   BDNF in schizophrenia, depression and corresponding animal models [J].
Angelucci, F ;
Brenè, S ;
Mathé, AA .
MOLECULAR PSYCHIATRY, 2005, 10 (04) :345-352
[4]   MicroRNA expression in the adult mouse central nervous system [J].
Bak, Mads ;
Silahtaroglu, Asli ;
Moller, Morten ;
Christensen, Mette ;
Rath, Martin F. ;
Skryabin, Boris ;
Tommerup, Niels ;
Kauppinen, Sakari .
RNA, 2008, 14 (03) :432-444
[5]   DECREASED EXPRESSION OF THE EMBRYONIC FORM OF THE NEURAL CELL-ADHESION MOLECULE IN SCHIZOPHRENIC BRAINS [J].
BARBEAU, D ;
LIANG, JJ ;
ROBITAILLE, Y ;
QUIRION, R ;
SRIVASTAVA, LK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2785-2789
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Regionally specific neuronal pathology in untreated patients with schizophrenia: A proton magnetic resonance spectroscopic imaging study [J].
Bertolino, A ;
Callicott, JH ;
Elman, I ;
Mattay, VS ;
Tedeschi, G ;
Frank, JA ;
Breier, A ;
Weinberger, DR .
BIOLOGICAL PSYCHIATRY, 1998, 43 (09) :641-648
[8]   Dysregulation of miRNA 181b in the temporal cortex in schizophrenia [J].
Beveridge, Natalie J. ;
Tooney, Paul A. ;
Carroll, Adam P. ;
Gardiner, Erin ;
Bowden, Nikola ;
Scott, Rodney J. ;
Tran, Nham ;
Dedova, Irina ;
Cairns, Murray J. .
HUMAN MOLECULAR GENETICS, 2008, 17 (08) :1156-1168
[9]   MONOCLONAL-ANTIBODY TO NEUROFILAMENT PROTEIN (SMI-32) LABELS A SUBPOPULATION OF PYRAMIDAL NEURONS IN THE HUMAN AND MONKEY NEOCORTEX [J].
CAMPBELL, MJ ;
MORRISON, JH .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 282 (02) :191-205
[10]   microRNAs in vertebrate physiology and human disease [J].
Chang, Tsung-Cheng ;
Mendell, Joshua T. .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2007, 8 :215-239