Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement

被引:96
作者
Fu, Jing-Lin
Fang, Qun [1 ]
Zhang, Ting
Jin, Xin-Hua
Fang, Zhao-Lun
机构
[1] Zhejiang Univ, Inst Microanalyt Syst, Hangzhou 310028, Peoples R China
[2] Zhejiang Univ, Dept Opt Engn, Hangzhou 310027, Peoples R China
关键词
D O I
10.1021/ac060153q
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, a simple LIF detection system based on an orthogonal optical arrangement for microfluidic chips was developed. Highly sensitive detection was achieved by detecting the fluorescence light emitted in the microchannel through the sidewall of the chip to reduce scattered light interference from the laser source. A special crossed-channel configuration, with a 1.5-mm distance from the separation channel to the sidewall of the glass chip, was designed in order to facilitate collection of emitted fluorescence light through the sidewall. The significant difference in intensity distribution of scattered laser light on the chip plane observed in this study was fully exploited to optimize S/N ratio of detected signals by rejection of scattered light, both through systematic measurements and employing ray-tracing simulation. A fluorescence collection angle of 45 degrees in the chip plane gave the best result, with a scattered light intensity 1/38 of that obtained at an angle of 90 degrees. Sodium fluorescein and fluorescein isothiocyanate-labeled amino acids were used as model samples to demonstrate the performance of the LIF system. A detection limit (S/N = 3) of 1.1 pM fluorescein was obtained, which is comparable to that of optimized confocal LIF systems for chip-based capillary electrophoresis. Apart from the high detection power, the system also has the advantages of simple optical structure, compactness, and ease in building.
引用
收藏
页码:3827 / 3834
页数:8
相关论文
共 30 条
[1]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[2]   PDMS 2D optical lens integrated with microfluidic channels: principle and characterization [J].
Camou, S ;
Fujita, H ;
Fujii, T .
LAB ON A CHIP, 2003, 3 (01) :40-45
[3]   An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications [J].
Chabinyc, ML ;
Chiu, DT ;
McDonald, JC ;
Stroock, AD ;
Christian, JF ;
Karger, AM ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2001, 73 (18) :4491-4498
[4]   Single-molecule detection in capillary electrophoresis: Molecular shot noise as a fundamental limit to chemical analysis [J].
Chen, DY ;
Dovichi, NJ .
ANALYTICAL CHEMISTRY, 1996, 68 (04) :690-696
[5]   SUBATTOMOLE AMINO-ACID ANALYSIS BY CAPILLARY ZONE ELECTROPHORESIS AND LASER-INDUCED FLUORESCENCE [J].
CHENG, YF ;
DOVICHI, NJ .
SCIENCE, 1988, 242 (4878) :562-564
[6]   Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection [J].
Dang, F ;
Zhang, L ;
Hagiwara, H ;
Mishina, Y ;
Baba, Y .
ELECTROPHORESIS, 2003, 24 (04) :714-721
[7]   LASER-INDUCED FLUORESCENCE OF FLOWING SAMPLES AS AN APPROACH TO SINGLE-MOLECULE DETECTION IN LIQUIDS [J].
DOVICHI, NJ ;
MARTIN, JC ;
JETT, JH ;
TRKULA, M ;
KELLER, RA .
ANALYTICAL CHEMISTRY, 1984, 56 (03) :348-354
[8]   A high-throughput continuous sample introduction interface for microfluidic chip-based capillary electrophoresis systems [J].
Fang, Q ;
Xu, GM ;
Fang, ZL .
ANALYTICAL CHEMISTRY, 2002, 74 (06) :1223-1231
[9]  
FANG Q, 2003, Patent No. 031415725
[10]   Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices [J].
Fister, JC ;
Jacobson, SC ;
Davis, LM ;
Ramsey, JM .
ANALYTICAL CHEMISTRY, 1998, 70 (03) :431-437