Engineering the third wave of biocatalysis

被引:1932
作者
Bornscheuer, U. T. [1 ]
Huisman, G. W. [2 ]
Kazlauskas, R. J. [3 ,4 ]
Lutz, S. [5 ]
Moore, J. C. [6 ]
Robins, K. [7 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Biochem, Dept Biotechnol & Enzyme Catalysis, D-17487 Greifswald, Germany
[2] Codexis Inc, Redwood City, CA 94063 USA
[3] Univ Minnesota, Inst Biotechnol, Dept Biochem Mol Biol & Biophys, St Paul, MN 55108 USA
[4] Seoul Natl Univ, Dept Chem & Biol Engn, Seoul 151744, South Korea
[5] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[6] Merck & Co Inc, Merck Res Labs, Rahway, NJ 07065 USA
[7] Lonza AG, Valais Works, CH-3930 Visp, Switzerland
基金
美国国家科学基金会;
关键词
DIRECTED EVOLUTION; AMINO-ACID; ENANTIOSELECTIVE BIOCATALYSTS; SATURATION MUTAGENESIS; COMPUTATIONAL DESIGN; FLUORESCENS ESTERASE; ASYMMETRIC-SYNTHESIS; MICROBIAL-PRODUCTION; ESCHERICHIA-COLI; ENZYME EVOLUTION;
D O I
10.1038/nature11117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past ten years, scientific and technological advances have established biocatalysis as a practical and environmentally friendly alternative to traditional metallo- and organocatalysis in chemical synthesis, both in the laboratory and on an industrial scale. Key advances in DNA sequencing and gene synthesis are at the base of tremendous progress in tailoring biocatalysts by protein engineering and design, and the ability to reorganize enzymes into new biosynthetic pathways. To highlight these achievements, here we discuss applications of protein-engineered biocatalysts ranging from commodity chemicals to advanced pharmaceutical intermediates that use enzyme catalysis as a key step.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 100 条
[11]   Industrial methods for the production of optically active intermediates [J].
Breuer, M ;
Ditrich, K ;
Habicher, T ;
Hauer, B ;
Kesseler, M ;
Stürmer, R ;
Zelinski, T .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (07) :788-824
[12]   Diastereoisomeric Salt Formation and Enzyme-Catalyzed Kinetic Resolution as Complementary Methods for the Chiral Separation of cis-/trans-Enantiomers of 3-Aminocyclohexanol [J].
Brocklehurst, Cara E. ;
Laumen, Kurt ;
La Vecchia, Luigi ;
Shaw, Duncan ;
Voegtle, Markus .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2011, 15 (01) :294-300
[13]   Penicillin acylase in the industrial production of β-lactam antibiotics [J].
Bruggink, A ;
Roos, EC ;
de Vroom, E .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 1998, 2 (02) :128-133
[14]  
Buchholz K., 2012, BIOCATALYSTS ENZYME, V2nd
[15]   Enzymatic Preparation of an (S)-Amino Acid from a Racemic Amino Acid [J].
Chen, Yijun ;
Goldberg, Steven L. ;
Hanson, Ronald L. ;
Parker, William L. ;
Gill, Iqbal ;
Tully, Thomas P. ;
Montana, Michael A. ;
Goswami, Animesh ;
Patel, Ramesh N. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2011, 15 (01) :241-248
[16]   The Combination of Hydroformylation and Biocatalysis for the Large-Scale Synthesis of (S)-Allysine Ethylene Acetal [J].
Cobley, Christopher J. ;
Hanson, Christopher H. ;
Lloyd, Michael C. ;
Simmonds, Shaun .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2011, 15 (01) :284-290
[17]   Asymmetric Synthesis of (S)-2-Indolinecarboxylic Acid by Combining Biocatalysis and Homogeneous Catalysis [J].
de lange, Ben ;
Hyett, David J. ;
Maas, Peter J. D. ;
Mink, Daniel ;
van Assema, Friso B. J. ;
Sereinig, Natascha ;
de Vries, Andre H. M. ;
de Vries, Johannes G. .
CHEMCATCHEM, 2011, 3 (02) :289-292
[18]   Sitagliptin Manufacture: A Compelling Tale of Green Chemistry, Process Intensification, and Industrial Asymmetric Catalysis [J].
Desai, Aman A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (09) :1974-1976
[19]   Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM) [J].
DeSantis, G ;
Wong, K ;
Farwell, B ;
Chatman, K ;
Zhu, ZL ;
Tomlinson, G ;
Huang, HJ ;
Tan, XQ ;
Bibbs, L ;
Chen, P ;
Kretz, K ;
Burk, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) :11476-11477
[20]  
Drauz K., 2012, ENZYME CATALYSIS ORG, V1