Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers

被引:636
作者
Qian, Fang [3 ]
Li, Yat [3 ]
Gradecak, Silvija [3 ]
Park, Hong-Gyu [3 ]
Dong, Yajie [3 ]
Ding, Yong [1 ]
Wang, Zhong Lin [1 ]
Lieber, Charles M. [2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat2253
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions(1,2). For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors(3) and low-temperature quantum devices(4,5) compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have an unusually high thermoelectric figure of merit(6). Here, we report the first multi-quantum-well (MQW) core/shell nanowire heterostructures based on well-defined III-nitride materials that enable lasing over a broad range of wavelengths at room temperature. Transmission electron microscopy studies show that the triangular GaN nanowire cores enable epitaxial and dislocation-free growth of highly uniform (InGaN/GaN)(n) quantum wells with n = 3, 13 and 26 and InGaN well thicknesses of 1-3 nm. Optical excitation of individual MQW nanowire structures yielded lasing with InGaN quantum-well composition-dependent emission from 365 to 494 nm, and threshold dependent on quantum well number, n. Our work demonstrates a new level of complexity in nanowire structures, which potentially can yield free-standing injection nanolasers.
引用
收藏
页码:701 / 706
页数:6
相关论文
共 32 条
[1]   GAIN AND THE THRESHOLD OF 3-DIMENSIONAL QUANTUM-BOX LASERS [J].
ASADA, M ;
MIYAMOTO, Y ;
SUEMATSU, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) :1915-1921
[2]   Near-infrared semiconductor subwavelength-wire lasers [J].
Chin, AH ;
Vaddiraju, S ;
Maslov, AV ;
Ning, CZ ;
Sunkara, MK ;
Meyyappan, M .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[3]  
Chuang S. L., 1995, PHYS OPTOELECTRONIC
[4]  
Coldren L., 1995, Diode lasers and photonic integrated circuits
[5]   Single-nanowire electrically driven lasers [J].
Duan, XF ;
Huang, Y ;
Agarwal, R ;
Lieber, CM .
NATURE, 2003, 421 (6920) :241-245
[6]   GaN nanowire lasers with low lasing thresholds [J].
Gradecak, S ;
Qian, F ;
Li, Y ;
Park, HG ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[7]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[8]   A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor [J].
Hu, Yongjie ;
Churchill, Hugh O. H. ;
Reilly, David J. ;
Xiang, Jie ;
Lieber, Charles M. ;
Marcus, Charles M. .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :622-625
[9]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[10]   Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics [J].
Javey, Ali ;
Nam, SungWoo ;
Friedman, Robin S. ;
Yan, Hao ;
Lieber, Charles M. .
NANO LETTERS, 2007, 7 (03) :773-777