Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia

被引:130
作者
Andreu, Irene [1 ]
Natividad, Eva [1 ]
机构
[1] Univ Zaragoza, CSIC, ICMA, Zaragoza, Spain
关键词
Calorimetric methods; magnetic hyperthermia; magnetic methods; magnetic nanoparticles; specific absorption rate; IRON-OXIDE NANOPARTICLES; ABSORPTION RATE; PROSTATE-CANCER; IN-VITRO; TEMPERATURE; FIELD; FLUID; THERMOTHERAPY; DEPENDENCE; SYSTEM;
D O I
10.3109/02656736.2013.826825
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In magnetic hyperthermia, characterising the specific functionality of magnetic nanoparticle arrangements is essential to plan the therapies by simulating maximum achievable temperatures. This functionality, i.e. the heat power released upon application of an alternating magnetic field, is quantified by means of the specific absorption rate (SAR), also referred to as specific loss power (SLP). Many research groups are currently involved in the SAR/SLP determination of newly synthesised materials by several methods, either magnetic or calorimetric, some of which are affected by important and unquantifiable uncertainties that may turn measurements into rough estimates. This paper reviews all these methods, discussing in particular sources of uncertainties, as well as their possible minimisation. In general, magnetic methods, although accurate, do not operate in the conditions of magnetic hyperthermia. Calorimetric methods do, but the easiest to implement, the initial-slope method in isoperibol conditions, derives inaccuracies coming from the lack of matching between thermal models, experimental set-ups and measuring conditions, while the most accurate, the pulse-heating method in adiabatic conditions, requires more complex set-ups.
引用
收藏
页码:739 / 751
页数:13
相关论文
共 126 条
[41]   Magnetic induction heating of FeCr nanocrystalline alloys [J].
Gomez-Polo, C. ;
Larumbe, S. ;
Perez-Landazabal, J. I. ;
Pastor, J. M. ;
Olivera, J. ;
Soto-Armananzas, J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (11) :1897-1901
[42]   Hysteresis losses in a dense superparamagnetic nanoparticle assembly [J].
Gudoshnikov, S. A. ;
Liubimov, B. Ya ;
Usov, N. A. .
AIP ADVANCES, 2012, 2 (01)
[43]   Metallic Iron Nanoparticles for MRI Contrast Enhancement and Local Hyperthermia [J].
Hacliipanayis, Coslas G. ;
Bonder, Michael J. ;
Balakrishanan, Srinivasan ;
Wang, Xiaoxia ;
Mao, Huio ;
Hadjipanayis, George C. .
SMALL, 2008, 4 (11) :1925-1929
[44]   Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia [J].
Hergt, R ;
Hiergeist, R ;
Hilger, I ;
Kaiser, WA ;
Lapatnikov, Y ;
Margel, S ;
Richter, U .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 270 (03) :345-357
[45]  
Hergt R., 2007, Magnetism in Medicine, P550
[46]   Heating potential of iron oxides for therapeutic purposes in interventional radiology [J].
Hilger, I ;
Frühauf, K ;
Andrä, W ;
Hiergeist, R ;
Hergt, R ;
Kaiser, WA .
ACADEMIC RADIOLOGY, 2002, 9 (02) :198-202
[47]  
Holman J.P., 1996, Heat Transfer, V8th
[48]   On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field [J].
Huang, S. ;
Wang, S-Y ;
Gupta, A. ;
Borca-Tasciuc, D-A ;
Salon, S. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (03)
[49]   Thermophysical and Magnetic Properties of Carbon Beads Containing Cobalt Nanocrystallites [J].
Izydorzak, M. ;
Skumiel, A. ;
Leonowicz, M. ;
Kaczmarek-Klinowska, M. ;
Pomogailo, A. D. ;
Dzhardimalieva, G. I. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2012, 33 (04) :627-639
[50]   Engineered superparamagnetic Mn0.5Zn0.5Fe2O4 nanoparticles as a heat shock protein induction agent for ocular neuroprotection in glaucoma [J].
Jeun, Minhong ;
Jeoung, Jin Wook ;
Moon, Seungje ;
Kim, Yu Jeong ;
Lee, Sanghoon ;
Paek, Sun Ha ;
Chung, Kyung-Won ;
Park, Ki Ho ;
Bae, Seongtae .
BIOMATERIALS, 2011, 32 (02) :387-394