Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β signaling pathway

被引:136
作者
Pap, M
Cooper, GM
机构
[1] Boston Univ, Dept Biol, Boston, MA 02215 USA
[2] Univ Med Sch Pecs, Dept Biol, Pecs, Hungary
关键词
D O I
10.1128/MCB.22.2.578-586.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway is an important mediator of growth factor-dependent survival of mammalian cells. A variety of targets of the Akt protein kinase have been implicated in cell survival, including the protein kinase glycogen synthase kinase 3 beta (GSK-3 beta). One of the targets of GSK-3 beta is translation initiation factor 2B (eIF2B), linking global regulation of protein synthesis to PI 3-kinase/Akt signaling. Because of the central role of protein synthesis, we have investigated the involvement of eIF2B, which is inhibited as a result of GSK-3 beta phosphorylation, in programmed cell death. We demonstrate that expression of eIF2B mutants lacking the GSK-3 beta phosphorylation or priming sites is sufficient to protect both Rat-1 and PC12 cells from apoptosis induced by overexpression of GSK-3 beta, inhibition of PI 3-kinase, or growth factor deprivation. Consistent with these effects on cell survival, expression of nonphosphorylatable eIF2B prevented inhibition of protein synthesis following treatment of cells with the PI 3-kinase inhibitor LY294002. Conversely, cycloheximide induced apoptosis of PC12 and Rat-1 cells, further indicating that protein synthesis was required for cell survival. Inhibition of translation resulting front treatment with cycloheximide led to the release of cytochrome c from mitochondria, similar to the effects of inhibition of PI 3-kinase. Expression of nonphosphorylatable eIF2B prevented cytochrome c release resulting from PI 3-kinase inhibition but did not affect cytochrome c release or apoptosis induced by cycloheximide. Regulation of translation resulting from phosphorylation of eIF2B by GSK-3 beta thus appears to contribute to the control of cell survival by the PI 3-kinase/Akt signaling pathway, acting upstream of mitochondrial cytochrome c release.
引用
收藏
页码:578 / 586
页数:9
相关论文
共 49 条
[11]   Crystal structure of glycogen synthase kinase 3β:: Structural basis for phosphate-primed substrate specificity and autoinhibition [J].
Dajani, R ;
Fraser, E ;
Roe, SM ;
Young, N ;
Good, V ;
Dale, TC ;
Pearl, LH .
CELL, 2001, 105 (06) :721-732
[12]   Cellular survival: a play in three Akts [J].
Datta, SR ;
Brunet, A ;
Greenberg, ME .
GENES & DEVELOPMENT, 1999, 13 (22) :2905-2927
[13]   Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J].
Datta, SR ;
Dudek, H ;
Tao, X ;
Masters, S ;
Fu, HA ;
Gotoh, Y ;
Greenberg, ME .
CELL, 1997, 91 (02) :231-241
[14]  
DEL PL, 1997, SCIENCE, V278, P687
[15]   Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation [J].
Dennis, PB ;
Fumagalli, S ;
Thomas, G .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (01) :49-54
[16]   PI 3-KINASE - STRUCTURAL AND FUNCTIONAL-ANALYSIS OF INTERSUBUNIT INTERACTIONS [J].
DHAND, R ;
HARA, K ;
HILES, I ;
BAX, B ;
GOUT, I ;
PANAYOTOU, G ;
FRY, MJ ;
YONEZAWA, K ;
KASUGA, M ;
WATERFIELD, MD .
EMBO JOURNAL, 1994, 13 (03) :511-521
[17]   Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling [J].
Ding, VW ;
Chen, RH ;
McCormick, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32475-32481
[18]   CREB is a regulatory target for the protein kinase Akt/PKB [J].
Du, KY ;
Montminy, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32377-32379
[19]   Cloning and characterization of complementary and genomic DNAs encoding the epsilon-subunit of rat translation initiation factor-2B [J].
Flowers, KM ;
Mellor, H ;
Matts, RL ;
Kimball, SR ;
Jefferson, LS .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1996, 1307 (03) :318-324
[20]   A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation [J].
Frame, S ;
Cohen, P ;
Biondi, RM .
MOLECULAR CELL, 2001, 7 (06) :1321-1327