Nanomaterials and nanostructures for efficient light absorption and photovoltaics

被引:207
作者
Yu, Rui [1 ]
Lin, Qingfeng [1 ]
Leung, Siu-Fung [1 ]
Fan, Zhiyong [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
Photovoltaics; Nanomaterials; Nanostructures; Light trapping; Carrier collection; Low-cost; SENSITIZED SOLAR-CELLS; MULTIPLE EXCITON GENERATION; SURFACE RECOMBINATION VELOCITY; ZNO NANOWIRES; OPTICAL-ABSORPTION; SILICON NANOWIRES; CARRIER MULTIPLICATION; CONVERSION EFFICIENCY; TIO2; NANOTUBES; QUANTUM DOTS;
D O I
10.1016/j.nanoen.2011.10.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanomaterials and nanostructures hold promising potency to enhance the performance of solar cells by improving both light trapping and photo-carrier collection. Meanwhile these new materials and structures can be fabricated in a low-cost fashion, enabling cost-effective production of photovoltaics. In this review, we summarize the recent development of studies on intriguing optical properties of nanomaterials/nanostructures and efforts on building solar cell devices with these materials and structures. As the family of nanomaterials has great diversity, we highlighted a number of representative materials and structures, including nanowires, nanopillars, nanocones, nanodomes, nanoparticles, etc. And we have covered materials include crystalline Si, amorphous Si, CdS, CdSe, CdTe, ZnO, CuInSe2, etc. These materials and structures have different physical properties, such as band-gap, absorption coefficient, surface/bulk recombination rate, etc., as well as different synthesis/fabrication approaches. Works on these materials and structures have laid a solid foundation for developing a new generation photovoltaics. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 103 条
[41]   Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices [J].
Kempa, Thomas J. ;
Tian, Bozhi ;
Kim, Dong Rip ;
Hu, Jinsong ;
Zheng, Xiaolin ;
Lieber, Charles M. .
NANO LETTERS, 2008, 8 (10) :3456-3460
[42]   Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization [J].
Kim, Dong Rip ;
Lee, Chi Hwan ;
Rao, Pratap Mahesh ;
Cho, In Sun ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (07) :2704-2708
[43]   Bamboo-Type TiO2 Nanotubes: Improved Conversion Efficiency in Dye-Sensitized Solar Cells [J].
Kim, Doohun ;
Ghicov, Andrei ;
Albu, Sergiu P. ;
Schmuki, Patrik .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (49) :16454-+
[44]   Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell [J].
Ko, Seung Hwan ;
Lee, Daeho ;
Kang, Hyun Wook ;
Nam, Koo Hyun ;
Yeo, Joon Yeob ;
Hong, Suk Joon ;
Grigoropoulos, Costas P. ;
Sung, Hyung Jin .
NANO LETTERS, 2011, 11 (02) :666-671
[45]   Ray optical light trapping in silicon microwires: exceeding the 2n2 intensity limit [J].
Kosten, Emily D. ;
Warren, Emily L. ;
Atwater, Harry A. .
OPTICS EXPRESS, 2011, 19 (04) :3316-3331
[46]   Crystallographic alignment of high-density gallium nitride nanowire arrays [J].
Kuykendall, T ;
Pauzauskie, PJ ;
Zhang, YF ;
Goldberger, J ;
Sirbuly, D ;
Denlinger, J ;
Yang, PD .
NATURE MATERIALS, 2004, 3 (08) :524-528
[47]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459
[48]   ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells [J].
Law, Matt ;
Greene, Lori E. ;
Radenovic, Aleksandra ;
Kuykendall, Tevye ;
Liphardt, Jan ;
Yang, Peidong .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22652-22663
[49]   Applications of Tunable TiO2 Nanotubes as Nanotemplate and Photovoltaic Device [J].
Li, Dongdong ;
Chang, Pai-Chun ;
Chien, Chung-Jen ;
Lu, Jia G. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5707-5711
[50]   Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte [J].
Li, Ling ;
Yang, Xichuan ;
Gao, Jiajia ;
Tian, Haining ;
Zhao, Jianzhang ;
Hagfeldt, Anders ;
Sun, Licheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (22) :8458-8460