Neural transdifferentiation of mesenchymal stem cells - a critical review

被引:160
作者
Krabbe, C [1 ]
Zimmer, J [1 ]
Meyer, M [1 ]
机构
[1] Univ So Denmark, Inst Med Biol, Odense, Denmark
关键词
adult stem cell; stem cell plasticity; neurons; cell-based therapy;
D O I
10.1111/j.1600-0463.2005.apm_3061.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The classic concept of stem cell differentiation can be illustrated as driving into a series of one-way streets, where a given stem cell through generations of daughter cells becomes correspondingly restricted and committed towards a definitive lineage with fully differentiated cells as end points. According to this concept, tissue-derived adult stem cells can only give rise to cells and cell lineages found in the natural, specified tissue of residence. During the last few years it has, however, been reported that under certain experimental conditions adult stem cells may lose their tissue or germ layer-specific phenotypes and become reprogrammed to transdifferentiate into cells of other germ layers and tissues. The transdifferentiation process is referred to as "stem cell plasticity". Mesenchymal stem cells, present in various tissues, including bone marrow, have - besides differentiation into bone, cartilage, smooth muscle and skeletal muscle - also been reported to transdifferentiate into skin, liver and brain cells (neurons and glia). Conversely, neural stem cells have been reported to give rise to blood cells. The actual occurrence of transdifferentiation is currently much debated, but would have immense clinical potential in cell replacement therapy and regenerative medicine. Controlled neural differentiation of human mesenchymal stem cells might thus become an important source of cells for cell therapy of neurodegenerative diseases, since autologous adult mesenchymal stem cells are more easily harvested and effectively expanded than corresponding neural stem cells. This article provides a critical review of the reports of neural transdifferentiation of mesenchymal stem cells, and proposes a set of criteria to be fulfilled for validation of transdifferentiation.
引用
收藏
页码:831 / 844
页数:14
相关论文
共 93 条
[61]   Primitive adult hematopoiletic stem cells can function as osteoblast precursors [J].
Olmsted-Davis, EA ;
Gugala, Z ;
Camargo, F ;
Gannon, FH ;
Jackson, K ;
Kienstra, KA ;
Shine, HD ;
Lindsey, RW ;
Hirschi, KK ;
Goodell, MA ;
Brenner, MK ;
Davis, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) :15877-15882
[62]   Skeletal progenitor cells and ageing human populations [J].
Oreffo, ROC ;
Bord, S ;
Triffitt, JT .
CLINICAL SCIENCE, 1998, 94 (05) :549-555
[63]   Bone marrow cells regenerate infarcted myocardium [J].
Orlic, D ;
Kajstura, J ;
Chimenti, S ;
Jakoniuk, I ;
Anderson, SM ;
Li, BS ;
Pickel, J ;
McKay, R ;
Nadal-Ginard, B ;
Bodine, DM ;
Leri, A ;
Anversa, P .
NATURE, 2001, 410 (6829) :701-705
[64]   Bone marrow as a potential source of hepatic oval cells [J].
Petersen, BE ;
Bowen, WC ;
Patrene, KD ;
Mars, WM ;
Sullivan, AK ;
Murase, N ;
Boggs, SS ;
Greenberger, JS ;
Goff, JP .
SCIENCE, 1999, 284 (5417) :1168-1170
[65]   Multilineage potential of adult human mesenchymal stem cells [J].
Pittenger, MF ;
Mackay, AM ;
Beck, SC ;
Jaiswal, RK ;
Douglas, R ;
Mosca, JD ;
Moorman, MA ;
Simonetti, DW ;
Craig, S ;
Marshak, DR .
SCIENCE, 1999, 284 (5411) :143-147
[66]   Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification [J].
Qian, LC ;
Saltzman, WM .
BIOMATERIALS, 2004, 25 (7-8) :1331-1337
[67]   RETRACTED: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells (Retracted article. See vol. 113, pg. 2370, 2009) [J].
Reyes, M ;
Lund, T ;
Lenvik, T ;
Aguiar, D ;
Koodie, L ;
Verfaillie, CM .
BLOOD, 2001, 98 (09) :2615-2625
[68]   Stem cells for regenerative medicine: advances in the engineering of tissues and organs [J].
Ringe, J ;
Kaps, C ;
Burmester, GR ;
Sittinger, M .
NATURWISSENSCHAFTEN, 2002, 89 (08) :338-351
[69]   Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols [J].
Rismanchi, N ;
Floyd, CL ;
Berman, RF ;
Lyeth, BG .
BRAIN RESEARCH, 2003, 991 (1-2) :46-55
[70]   The human umbilical cord blood: A potential source for osteoblast progenitor cells [J].
Rosada, C ;
Justesen, J ;
Melsvik, D ;
Ebbesen, P ;
Kassem, M .
CALCIFIED TISSUE INTERNATIONAL, 2003, 72 (02) :135-142