共 39 条
Escherichia coli produces phosphoantigens activating human γδ T cells
被引:46
作者:
Feurle, J
Espinosa, E
Eckstein, S
Pont, F
Kunzmann, V
Fournié, JJ
Herderich, M
Wilhelm, M
机构:
[1] Univ Wurzburg, Med Poliklin, D-97070 Wurzburg, Germany
[2] CHU Purpan, INSERM U395, F-31024 Toulouse, France
[3] CHU Purpan, IFR Claude de Preval, F-31024 Toulouse, France
[4] Univ Wurzburg, Lehrstuhl Lebensmittelchem, D-97074 Wurzburg, Germany
关键词:
D O I:
10.1074/jbc.M106443200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Human Vgamma9delta2 T lymphocytes are suggested to play an important role in the immune response to various microbial pathogens. In contrast to alphabeta T cells, gammadelta T lymphocytes recognize small, non-protein, phosphate-bearing antigens (phosphoantigens) in a major histocompatibility complex-independent manner. Four different phosphoantigens termed TUBag1 to TUBag4 with a common 3-formyl-1-butyl-pyrophosphate moiety and isopentenyl-pyrophosphate have been isolated and identified from mycobacteria. However, natural occurring gammadelta T cell ligands from other bacterial species were not characterized so far. Here, we describe the structural identification of the two compounds responsible for the gammadelta T cell-stimulating capacity of Escherichia coli as similar to the mycobacterial phosphoantigens 3-formyl-1-butylpyrophosphate and its M-r 275 homologue TUBag2. In addition, E. coli phosphoantigens exert bioactivities on gammadelta T cells with similar potencies to the mycobacterial phosphoantigens at 5-15 nm concentration. Furthermore, our results clearly prove that the deoxyxylulose 5-phophate pathway (also referred to as Rohmer metabolic route of isoprenoid biosynthesis) is essential for the biosynthesis of the phosphoantigens in E. coli. Because this pathway is absent from human cells, it proves an ideal target for focusing efficiently the antimicrobial selectivity of human gammadelta T lymphocytes.
引用
收藏
页码:148 / 154
页数:7
相关论文