Advances in molecular photocatalytic and electrocatalytic CO2 reduction

被引:416
作者
Windle, Christopher D. [1 ]
Perutz, Robin N. [1 ]
机构
[1] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Carbon dioxide; Photocatalysis; Electrocatalysis; Solar energy conversion; CARBON-DIOXIDE REDUCTION; VISIBLE-LIGHT; ELECTROCHEMICAL REDUCTION; HYBRID PHOTOCATALYSTS; CONVERSION; COMPLEX; PHOTOREDUCTION; EFFICIENT; MONOXIDE; METHANOL;
D O I
10.1016/j.ccr.2012.03.010
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This review describes recent developments in photocatalytic and electrocatalytic CO2 reduction. On the electrocatalytic side, there have been advances in optimization of known rhenium motifs sometimes in conjunction with silicon photoelectrodes giving enhanced catalytic current and stability. Complexes of copper capable of absorbing atmospheric CO2 have been incorporated into an electrocatalytic cycle and metal-free electrocatalysis of CO2 to methanol has been achieved with pyridinium ions. A complete cell with two photo-electrodes, one for water oxidation and the other for CO2 reduction to formate has been set up successfully. The cathode employs ruthenium catalysts on InP. Progress in photocatalytic CO2 reduction has been made with osmium complexes exhibiting good selectivity and stability. The separation between Ru and Re centers in light-harvesting donor-acceptor dyads has been investigated providing some inspiration for design. A ruthenium catalyst has been sensitized by tantalum oxide particles. Metalloporphyrin-rhenium dyads have also been studied for photocatalytic CO2 reduction. In the biological arena, a ruthenium complex has been used to sensitize carbon monoxide dehydrogenase on titanium dioxide particles. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2562 / 2570
页数:9
相关论文
共 40 条
[1]   Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex [J].
Angamuthu, Raja ;
Byers, Philip ;
Lutz, Martin ;
Spek, Anthony L. ;
Bouwman, Elisabeth .
SCIENCE, 2010, 327 (5963) :313-315
[2]   Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer [J].
Arai, Takeo ;
Tajima, Shin ;
Sato, Shunsuke ;
Uemura, Keiko ;
Morikawa, Takeshi ;
Kajino, Tsutomu .
CHEMICAL COMMUNICATIONS, 2011, 47 (47) :12664-12666
[3]   Utilisation of CO2 as a chemical feedstock:: opportunities and challenges [J].
Aresta, Michele ;
Dibenedetto, Angela .
DALTON TRANSACTIONS, 2007, (28) :2975-2992
[4]   Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell [J].
Barton, Emily E. ;
Rampulla, David M. ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (20) :6342-+
[5]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[6]   Catalysis of the electrochemical reduction of carbon dioxide by iron(O) porphyrins: Synergystic effect of weak Bronsted acids [J].
Bhugun, I ;
Lexa, D ;
Saveant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (07) :1769-1776
[7]   Conjugation effect of the bridging ligand on the CO2 reduction properties in difunctional photocatalysts [J].
Bian, Zhao-Yong ;
Chi, Shao-Ming ;
Li, Li ;
Fu, Wenfu .
DALTON TRANSACTIONS, 2010, 39 (34) :7884-7887
[8]   [Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction [J].
Bourrez, Marc ;
Molton, Florian ;
Chardon-Noblat, Sylvie ;
Deronzier, Alain .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (42) :9903-9906
[9]   Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals [J].
Chaudhary, Yatendra S. ;
Woolerton, Thomas W. ;
Allen, Christopher S. ;
Warner, Jamie H. ;
Pierce, Elizabeth ;
Ragsdale, Stephen W. ;
Armstrong, Fraser A. .
CHEMICAL COMMUNICATIONS, 2012, 48 (01) :58-60
[10]   Towards New Molecular Photocatalysts for CO2 Reduction: Photo-Induced Electron Transfer versus CO Dissociation within [Os(NN)(CO)2Cl2] Complexes [J].
Chauvin, Jerome ;
Lafolet, Frederic ;
Chardon-Noblat, Sylvie ;
Deronzier, Alain ;
Jakonen, Minna ;
Haukka, Matti .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (15) :4313-4322