Survival-time distribution for inelastic collapse

被引:23
作者
Swift, MR [1 ]
Bray, AJ [1 ]
机构
[1] Univ Manchester, Dept Theoret Phys, Manchester M13 9PL, Lancs, England
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 05期
关键词
D O I
10.1103/PhysRevE.59.R4721
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a recent publication [Phys. Rev. Lett. 81, 1142 (1948)] it was argued that a randomly forced particle that collides inelastically with a boundary can undergo inelastic collapse and come to rest in a finite time. Here we discuss the survival probability for the inelastic collapse transition. It is found that the collapse-time distribution behaves asymptotically as a power law in time, and that the exponent governing this decay is nonuniversal. An approximate calculation of the collapse-time exponent confirms this behavior and shows how inelastic collapse can be viewed as a generalized persistence phenomenon. [S1063-651X(99)50705-8].
引用
收藏
页码:R4721 / R4724
页数:4
相关论文
共 23 条
[1]   Reaction kinetics of cluster impurities [J].
BenNaim, E .
PHYSICAL REVIEW E, 1996, 53 (02) :1566-1571
[2]   SEMIFLEXIBLE POLYMER IN THE HALF-PLANE AND STATISTICS OF THE INTEGRAL OF A BROWNIAN CURVE [J].
BURKHARDT, TW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22) :L1157-L1162
[3]  
CARDY J, 1995, J PHYS A-MATH GEN, V28, pL19
[4]   Domain growth in a one-dimensional driven diffusive system [J].
Cornell, SJ ;
Bray, AJ .
PHYSICAL REVIEW E, 1996, 54 (02) :1153-1160
[5]   Inelastic collapse of a randomly forced particle [J].
Cornell, SJ ;
Swift, MR ;
Bray, AJ .
PHYSICAL REVIEW LETTERS, 1998, 81 (06) :1142-1145
[6]   EXACT FIRST-PASSAGE EXPONENTS OF 1D DOMAIN GROWTH - RELATION TO A REACTION-DIFFUSION MODEL [J].
DERRIDA, B ;
HAKIM, V ;
PASQUIER, V .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :751-754
[7]   NONTRIVIAL EXPONENTS IN THE ZERO-TEMPERATURE DYNAMICS OF THE 1D ISING AND POTTS MODELS [J].
DERRIDA, B ;
BRAY, AJ ;
GODRECHE, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :L357-L361
[8]   Persistent spins in the linear diffusion approximation of phase ordering and zeros of stationary Gaussian processes [J].
Derrida, B ;
Hakim, V ;
Zeitak, R .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :2871-2874
[9]  
Gardiner C.W., 1990, HDB STOCHASTIC METHO
[10]   Fluctuation kinetics in a multispecies reaction-diffusion system [J].
Howard, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :3437-3460