Distribution free decomposition of multivariate data

被引:106
作者
Comaniciu, D [1 ]
Meer, P [1 ]
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08855 USA
关键词
convergence; gradient density estimation; mean shift procedure; mode seeking; nonparametric cluster analysis; range searching;
D O I
10.1007/s100440050011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a practical approach to nonparametric cluster analysis of large data sets. The number of clusters and the cluster centres are automatically derived by mode seeking with the mean shift procedure on a reduced see of points randomly selected from the data. The cluster boundaries are delineated using a k-nearest neighbour technique. The proposed algorithm is stable and efficient, a 10,000 point data set being decomposed in only a few seconds. Complex clustering examples and applications are discussed, and convergence of the gradient ascent mean shift procedure is demonstrated for arbitrary distribution and cardinality of the data.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 19 条
[1]   Location- and density-based hierarchical clustering using similarity analysis [J].
Bajcsy, P ;
Ahuja, N .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (09) :1011-1015
[2]   Real time face and object tracking as a component of a perceptual user interface [J].
Bradski, GR .
FOURTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION - WACV'98, PROCEEDINGS, 1998, :214-219
[3]   MEAN SHIFT, MODE SEEKING, AND CLUSTERING [J].
CHENG, YZ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) :790-799
[4]   Bimodal system for interactive indexing and retrieval of pathology images [J].
Comaniciu, D ;
Meer, P ;
Foran, D ;
Medl, A .
FOURTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION - WACV'98, PROCEEDINGS, 1998, :76-81
[5]   Robust analysis of feature spaces: Color image segmentation [J].
Comaniciu, D ;
Meer, P .
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, :750-755
[6]  
Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
[7]  
FUKUNAGA K, 1975, IEEE T INFORM THEORY, V21, P32, DOI 10.1109/TIT.1975.1055330
[8]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[9]   A DYNAMIC APPROACH FOR CLUSTERING DATA [J].
GARCIA, JA ;
FDEZVALDIVIA, J ;
CORTIJO, FJ ;
MOLINA, R .
SIGNAL PROCESSING, 1995, 44 (02) :181-196
[10]   A clustering method based on the estimation of the probability density function and on the skeleton by influence zones. Application to image processing [J].
Herbin, M ;
Bonnet, N ;
Vautrot, P .
PATTERN RECOGNITION LETTERS, 1996, 17 (11) :1141-1150