Charge detection in graphene quantum dots

被引:107
作者
Guettinger, J. [1 ]
Stampfer, C. [1 ]
Hellmueller, S. [1 ]
Molitor, F. [1 ]
Ihn, T. [1 ]
Ensslin, K. [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
carbon; interface states; nanostructured materials; quantum dots;
D O I
10.1063/1.3036419
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter of similar to 200 nm) connected to source and drain contacts via two narrow graphene constrictions. From Coulomb diamond measurements a charging energy of 4.3 meV is extracted. The charge detector is based on a 45 nm wide graphene nanoribbon placed approximately 60 nm from the island. We show that resonances in the nanoribbon can be used to detect individual charging events on the quantum dot. The charging induced potential change on the quantum dot causes a steplike change in the current in the charge detector. The relative change in the current ranges from 10% up to 60% for detecting individual charging events.
引用
收藏
页数:3
相关论文
共 24 条
[1]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[2]   Differential charge sensing and charge delocalization in a tunable double quantum dot [J].
DiCarlo, L ;
Lynch, HJ ;
Johnson, AC ;
Childress, LI ;
Crockett, K ;
Marcus, CM ;
Hanson, MP ;
Gossard, AC .
PHYSICAL REVIEW LETTERS, 2004, 92 (22) :226801-1
[3]  
Elzerman JM, 2004, NATURE, V430, P431, DOI 10.1039/nature02693
[4]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[5]   MEASUREMENTS OF COULOMB BLOCKADE WITH A NONINVASIVE VOLTAGE PROBE [J].
FIELD, M ;
SMITH, CG ;
PEPPER, M ;
RITCHIE, DA ;
FROST, JEF ;
JONES, GAC ;
HASKO, DG .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1311-1314
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242
[8]   Counting statistics of single electron transport in a quantum dot [J].
Gustavsson, S ;
Leturcq, R ;
Simovic, B ;
Schleser, R ;
Ihn, T ;
Studerus, P ;
Ensslin, K ;
Driscoll, DC ;
Gossard, AC .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[9]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[10]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625