In vivo optical frequency domain imaging of human retina and choroid

被引:151
作者
Lee, Edward C. W.
de Boer, Johannes F.
Mujat, Mircea
Lim, Hyungsik
Yun, Seok H.
机构
[1] Harvard Univ, Sch Med, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02114 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
来源
OPTICS EXPRESS | 2006年 / 14卷 / 10期
关键词
D O I
10.1364/OE.14.004403
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical frequency domain imaging (OFDI) using swept laser sources is an emerging second-generation method for optical coherence tomography (OCT). Despite the widespread use of conventional OCT for retinal disease diagnostics, until now imaging the posterior eye segment with OFDI has not been possible. Here we report the development of a high-performance swept laser at 1050 nm and an ophthalmic OFDI system that offers an A-line rate of 18.8 kHz, sensitivity of > 92 dB over a depth range of 2.4 mm with an optical exposure level of 550 mu W, and deep penetration into the choroid. Using these new technologies, we demonstrate comprehensive human retina, optic disc, and choroid imaging in vivo. This advance enables us to view choroidal vasculature in vivo without intravenous injection of fluorescent dyes and may provide a useful tool for evaluating choroidal as well as retinal diseases. (c) 2006 Optical Society of America.
引用
收藏
页码:4403 / 4411
页数:9
相关论文
共 34 条
[1]  
ALFARO DV, 2006, AGE RELATED MACULAR
[2]  
ANSI, 2000, American national standard for safe use of lasers
[3]   MODIFIED OPTICAL FREQUENCY-DOMAIN REFLECTOMETRY WITH HIGH SPATIAL-RESOLUTION FOR COMPONENTS OF INTEGRATED OPTIC SYSTEMS [J].
BARFUSS, H ;
BRINKMEYER, E .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1989, 7 (01) :3-10
[4]   Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber [J].
Bourquin, S ;
Aguirre, AD ;
Hartl, I ;
Hsiung, P ;
Ko, TH ;
Fujimoto, JG ;
Birks, TA ;
Wadsworth, WJ ;
Bünting, U ;
Kopf, D .
OPTICS EXPRESS, 2003, 11 (24) :3290-3297
[5]   Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography [J].
Cense, B ;
Nassif, NA ;
Chen, T ;
Pierce, M ;
Yun, SH ;
Park, BH ;
Bouma, BE ;
Tearney, GJ ;
de Boer, JF .
OPTICS EXPRESS, 2004, 12 (11) :2435-2447
[6]   In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography [J].
Cense, B ;
Chen, HC ;
Park, BH ;
Pierce, MC ;
de Boer, JF .
JOURNAL OF BIOMEDICAL OPTICS, 2004, 9 (01) :121-125
[7]   Optical coherence tomography using a frequency-tunable optical source [J].
Chinn, SR ;
Swanson, EA ;
Fujimoto, JG .
OPTICS LETTERS, 1997, 22 (05) :340-342
[8]   Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source [J].
Choma, MA ;
Hsu, K ;
Izatt, JA .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (04)
[9]   Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J].
Choma, MA ;
Sarunic, MV ;
Yang, CH ;
Izatt, JA .
OPTICS EXPRESS, 2003, 11 (18) :2183-2189
[10]   MONOCHROMATIC OPHTHALMOSCOPY AND FUNDUS PHOTOGRAPHY - NORMAL FUNDUS [J].
DELORI, FC ;
GRAGOUDAS, ES ;
FRANCISCO, R ;
PRUETT, RC .
ARCHIVES OF OPHTHALMOLOGY, 1977, 95 (05) :861-868