Periodic-orbit theory of the blowout bifurcation

被引:55
作者
Nagai, Y [1 ]
Lai, YC [1 ]
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 04期
关键词
D O I
10.1103/PhysRevE.56.4031
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper presents a theory for characterization of the blowout bifurcation by periodic orbits. Blowout bifurcation in chaotic systems occurs when a chaotic attractor, lying in some symmetric invariant subspace, becomes transversely unstable. We present an analysis and numerical results that indicate that the bifurcation is mediated by changes in the transverse stability of an infinite number of unstable periodic orbits embedded in the chaotic attractor. There are two distinct groups of periodic orbits: one transversely stable and another transversely unstable. The bifurcation occurs when some properly weighted transverse eigenvalues of these two groups are balanced. Our results thus categorize the blowout bifurcation as a unique type of bifurcation that involves an infinite number of periodic orbits, in contrast to most previously known bifurcations that are mediated by only a finite number of periodic orbits.
引用
收藏
页码:4031 / 4041
页数:11
相关论文
共 61 条
  • [1] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [2] Alligood K.T., 1996, Chaos: An Introduction to Dynamical Systems, DOI [10.1007/0-387-22492-0_3, DOI 10.1007/0-387-22492-0_3]
  • [3] [Anonymous], 1993, CHAOS DYNAMICAL SYST
  • [4] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    [J]. PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139
  • [5] From attractor to chaotic saddle: A tale of transverse instability
    Ashwin, P
    Buescu, J
    Stewart, I
    [J]. NONLINEARITY, 1996, 9 (03) : 703 - 737
  • [6] ASHWIN P, 1997, UNPUB
  • [7] ASHWIN P, 1996, UNPUB
  • [8] EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS
    AUERBACH, D
    CVITANOVIC, P
    ECKMANN, JP
    GUNARATNE, G
    PROCACCIA, I
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (23) : 2387 - 2389
  • [9] SCALING OF PERIODIC-ORBITS IN 2-DIMENSIONAL CHAOTIC SYSTEMS
    AUERBACH, D
    [J]. PHYSICAL REVIEW A, 1990, 41 (12): : 6692 - 6701
  • [10] SCALING STRUCTURE OF STRANGE ATTRACTORS
    AUERBACH, D
    OSHAUGHNESSY, B
    PROCACCIA, I
    [J]. PHYSICAL REVIEW A, 1988, 37 (06): : 2234 - 2236