A Versatile Light-Switchable Nanorod Memory: Wurtzite ZnO on Perovskite SrTiO3

被引:152
作者
Bera, Ashok [1 ]
Peng, Haiyang [1 ]
Lourembam, James [1 ]
Shen, Youde [1 ]
Sun, Xiao Wei [2 ,3 ]
Wu, T. [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] South Univ Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
[4] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
ZnO; SrTiO3; resistive switching; persistent photoconductivity; electron tunneling; THIN-FILMS; OXIDE NANOWIRE; FIELD-EMISSION; ELECTRON-GAS; HETEROJUNCTION; ULTRAVIOLET; GROWTH; NANOGENERATORS; BARRIERS; DEVICES;
D O I
10.1002/adfm.201300509
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integrating materials with distinct lattice symmetries and dimensions is an effective design strategy toward realizing novel devices with unprecedented functionalities, but many challenges remain in synthesis and device design. Here, a heterojunction memory made of wurtzite ZnO nanorods grown on perovskite Nb-doped SrTiO3 (NSTO) is reported, the electronic properties of which can be drastically reconfigured by applying a voltage and light. Despite of the distinct lattice structures of ZnO and NSTO, a consistent nature of single crystallinity is achieved in the heterojunctions via the low-temperature solution-based hydrothermal growth. In addition to a high and persistent photoconductivity, the ZnO/NSTO heterojunction diode can be turned into a versatile light-switchable resistive switching memory with highly tunable ON and OFF states. The reversible modification of the effective interfacial energy barrier in the concurrent electronic and ionic processes most likely gives rise to the high susceptibility of the ZnO/NSTO heterojunction to external electric and optical stimuli. Furthermore, this facile synthesis route is promising to be generalized to other novel functional nanodevices integrating materials with diverse structures and properties.
引用
收藏
页码:4977 / 4984
页数:8
相关论文
共 68 条
[1]   High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer -: art. no. 012109 [J].
Bellingeri, E ;
Marré, D ;
Pallecchi, I ;
Pellegrino, L ;
Siri, AS .
APPLIED PHYSICS LETTERS, 2005, 86 (01) :012109-1
[2]   Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires [J].
Bera, A. ;
Basak, D. .
APPLIED PHYSICS LETTERS, 2008, 93 (05)
[3]   Trap-Assisted Tunneling in Si-InAs Nanowire Heterojunction Tunnel Diodes [J].
Bessire, Cedric D. ;
Bjoerk, Mikael T. ;
Schmid, Heinz ;
Schenk, Andreas ;
Reuter, Kathleen B. ;
Riel, Heike .
NANO LETTERS, 2011, 11 (10) :4195-4199
[4]   CARRIER TRANSPORT ACROSS METAL-SEMICONDUCTOR BARRIERS [J].
CHANG, CY ;
SZE, SM .
SOLID-STATE ELECTRONICS, 1970, 13 (06) :727-+
[5]   A Parallel Circuit Model for Multi-State Resistive-Switching Random Access Memory [J].
Chen, Albert B. K. ;
Choi, Byung Joon ;
Yang, Xiang ;
Chen, I. -Wei .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (03) :546-554
[6]   High-Performance Single-Crystalline Arsenic-Doped Indium Oxide Nanowires for Transparent Thin-Film Transistors and Active Matrix Organic Light-Emitting Diode Displays [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Chen, Haitian ;
Ha, Young-geun ;
Wu, Chao ;
Sukcharoenchoke, Saowalak ;
Fu, Yue ;
Liu, Jun ;
Facchetti, Antonio ;
Marks, Tobin J. ;
Thompson, Mark E. ;
Zhou, Chongwu .
ACS NANO, 2009, 3 (11) :3383-3390
[7]   SURFACE STATES AND BARRIER HEIGHT OF METAL-SEMICONDUCTOR SYSTEMS [J].
COWLEY, AM ;
SZE, SM .
JOURNAL OF APPLIED PHYSICS, 1965, 36 (10) :3212-&
[8]   Physics of thin-film ferroelectric oxides [J].
Dawber, M ;
Rabe, KM ;
Scott, JF .
REVIEWS OF MODERN PHYSICS, 2005, 77 (04) :1083-1130
[9]   Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution [J].
Govender, K ;
Boyle, DS ;
Kenway, PB ;
O'Brien, P .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (16) :2575-2591
[10]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899