High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2

被引:678
作者
Gao, Hongcai [1 ]
Xiao, Fei [1 ]
Ching, Chi Bun [1 ]
Duan, Hongwei [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
关键词
graphene hydrogel; manganese oxide nanoplates; cathodic electrodeposition; asymmetric supercapacitor; energy storage; DIOXIDE NANOWALL ARRAYS; ELECTROCHEMICAL CAPACITORS; MANGANESE OXIDE; AQUEOUS-ELECTROLYTES; CHEMICAL-REDUCTION; ENERGY DENSITY; ELECTRODES; DEVICES; NANOCOMPOSITES; ARCHITECTURES;
D O I
10.1021/am300455d
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have successfully fabricated an asymmetric supercapacitor with high energy and power densities using graphene hydrogel (GH) with 3D interconnected pores as the negative electrode and vertically aligned MnO2 nanoplates on nickel foam (MnO2-NF) as the positive electrode in a neutral aqueous Na2SO4 electrolyte. Because of the desirable porous structure, high specific capacitance and rate capability of GH and MnO2-NF, complementary potential window of the two electrodes, and the elimination of polymer binders and conducting additives, the asymmetric supercapacitor can be cycled reversibly in a wide potential window of 0-2.0 V and exhibits art energy density of 23.2 Wh kg(-1) with a power density of 1.0 kW kg(-1). Energy density of the asymmetric supercapacitor is significantly improved in comparison with those of symmetric supercapacitors based on GH (5.5 Wh kg(-1)) and MnO2-NF (6.7 Wh kg(-1)). Even at a high power density of 10.0 kW kg(-1), the asymmetric supercapacitor can deliver a high energy density of 14.9 Wh kg(-1). The asymmetric supercapacitor also presents stable cycling performance with 83.4% capacitance retention after 5000 cycles.
引用
收藏
页码:2801 / 2810
页数:10
相关论文
共 68 条
[21]   Symmetrical MnO2-Carbon Nanotube-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading [J].
Hu, Liangbing ;
Chen, Wei ;
Xie, Xing ;
Liu, Nian ;
Yang, Yuan ;
Wu, Hui ;
Yao, Yan ;
Pasta, Mauro ;
Alshareef, Husam N. ;
Cui, Yi .
ACS NANO, 2011, 5 (11) :8904-8913
[22]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[23]   A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes [J].
Jiang, Hao ;
Li, Chunzhong ;
Sun, Ting ;
Ma, Jan .
NANOSCALE, 2012, 4 (03) :807-812
[24]   Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution [J].
Jin, Wei-Hong ;
Cao, Gen-Ting ;
Sun, Jing-Ya .
JOURNAL OF POWER SOURCES, 2008, 175 (01) :686-691
[25]   Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium [J].
Khomenko, V ;
Raymundo-Piñero, E ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (01) :183-190
[26]   High-voltage asymmetric supercapacitors operating in aqueous electrolyte [J].
Khomenko, V ;
Raymundo-Piñero, E ;
Frackowiak, E ;
Béguin, F .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :567-573
[27]   The structure and ordering of ε-MnO2 [J].
Kim, CH ;
Akase, Z ;
Zhang, LC ;
Heuer, AH ;
Newman, AE ;
Hughes, PJ .
JOURNAL OF SOLID STATE CHEMISTRY, 2006, 179 (03) :753-774
[28]   Principles and applications of electrochemical capacitors [J].
Kötz, R ;
Carlen, M .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2483-2498
[29]  
Kulakov V. A., 1987, Journal of Applied Spectroscopy, V46, P619, DOI 10.1007/BF00661240
[30]   Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors [J].
Lee, Seung Woo ;
Gallant, Betar M. ;
Byon, Hye Ryung ;
Hammond, Paula T. ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) :1972-1985