High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2

被引:678
作者
Gao, Hongcai [1 ]
Xiao, Fei [1 ]
Ching, Chi Bun [1 ]
Duan, Hongwei [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
关键词
graphene hydrogel; manganese oxide nanoplates; cathodic electrodeposition; asymmetric supercapacitor; energy storage; DIOXIDE NANOWALL ARRAYS; ELECTROCHEMICAL CAPACITORS; MANGANESE OXIDE; AQUEOUS-ELECTROLYTES; CHEMICAL-REDUCTION; ENERGY DENSITY; ELECTRODES; DEVICES; NANOCOMPOSITES; ARCHITECTURES;
D O I
10.1021/am300455d
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have successfully fabricated an asymmetric supercapacitor with high energy and power densities using graphene hydrogel (GH) with 3D interconnected pores as the negative electrode and vertically aligned MnO2 nanoplates on nickel foam (MnO2-NF) as the positive electrode in a neutral aqueous Na2SO4 electrolyte. Because of the desirable porous structure, high specific capacitance and rate capability of GH and MnO2-NF, complementary potential window of the two electrodes, and the elimination of polymer binders and conducting additives, the asymmetric supercapacitor can be cycled reversibly in a wide potential window of 0-2.0 V and exhibits art energy density of 23.2 Wh kg(-1) with a power density of 1.0 kW kg(-1). Energy density of the asymmetric supercapacitor is significantly improved in comparison with those of symmetric supercapacitors based on GH (5.5 Wh kg(-1)) and MnO2-NF (6.7 Wh kg(-1)). Even at a high power density of 10.0 kW kg(-1), the asymmetric supercapacitor can deliver a high energy density of 14.9 Wh kg(-1). The asymmetric supercapacitor also presents stable cycling performance with 83.4% capacitance retention after 5000 cycles.
引用
收藏
页码:2801 / 2810
页数:10
相关论文
共 68 条
[51]   Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors [J].
Wang, Yaohui ;
Zhitomirsky, Igor .
MATERIALS LETTERS, 2011, 65 (12) :1759-1761
[52]   A new concept hybrid electrochemical surpercapacitor:: Carbon/LiMn2O4 aqueous system [J].
Wang, YG ;
Xia, YY .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (11) :1138-1142
[53]   May 3D nickel foam electrode be the promising choice for supercapacitors? [J].
Wang, You-Ling ;
Zhao, Yong-Qing ;
Xu, Cai-Ling .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (03) :829-834
[54]   Synthesis of Nanostructured Mesoporous Manganese Oxides with Three-Dimensional Frameworks and Their Application in Supercapacitors [J].
Wang, Yu-Ting ;
Lu, An-Hui ;
Zhang, Hui-Li ;
Li, Wen-Cui .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5413-5421
[55]   Manganese oxide-based materials as electrochemical supercapacitor electrodes [J].
Wei, Weifeng ;
Cui, Xinwei ;
Chen, Weixing ;
Ivey, Douglas G. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1697-1721
[56]   Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications-Effect of supersaturation ratio [J].
Wei, Weifeng ;
Cui, Xinwei ;
Mao, Xuhui ;
Chen, Weixing ;
Ivey, Douglas G. .
ELECTROCHIMICA ACTA, 2011, 56 (03) :1619-1628
[57]   Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors [J].
Wu, MS ;
Chiang, PCJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (06) :A123-A126
[58]   Electrochemical Synthesis and Supercapacitive Properties of ε-MnO2 with Porous/Nanoflaky Hierarchical Architectures [J].
Xiao, Wei ;
Xia, Hui ;
Fuh, Jerry-Ying-Hsi ;
Lu, Li .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (07) :A627-A633
[59]   Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process [J].
Xu, Yuxi ;
Sheng, Kaixuan ;
Li, Chun ;
Shi, Gaoquan .
ACS NANO, 2010, 4 (07) :4324-4330
[60]   A hierarchical porous MnO2-based electrode for electrochemical capacitor [J].
Xue, Leigang ;
Hao, Hao ;
Wei, Zhen ;
Huang, Tao ;
Yu, Aishui .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (03) :485-491