Photoacoustic microscopy

被引:457
作者
Yao, Junjie [1 ]
Wang, Lihong V. [1 ]
机构
[1] Washington Univ, Dept Biomed Engn, Opt Imaging Lab, St Louis, MO 63130 USA
基金
美国国家卫生研究院;
关键词
Photoacoustic microscopy; multi-scale imaging; real-time imaging; functional imaging; molecular imaging; blood flow imaging; metabolic imaging; tumor imaging; gene expression imaging; brain imaging; nanoparticle imaging; SENTINEL LYMPH-NODE; OPTICAL COHERENCE TOMOGRAPHY; IN-VIVO; REAL-TIME; BLOOD-FLOW; OPTOACOUSTIC TOMOGRAPHY; VASCULAR PERFUSION; OXYGEN-SATURATION; HIGH-RESOLUTION; CONTRAST AGENT;
D O I
10.1002/lpor.201200060
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (similar to 1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional, molecular, flow dynamic and metabolic contrasts in vivo. Focusing on state-of-the-art developments in PAM, this Review discusses the key features of PAM implementations and their applications in biomedical studies.
引用
收藏
页码:758 / 778
页数:21
相关论文
共 209 条
[11]   Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography [J].
Bauer, Adam Q. ;
Nothdurft, Ralph E. ;
Erpelding, Todd N. ;
Wang, Lihong V. ;
Culver, Joseph P. .
JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (09)
[12]   Biomedical photoacoustic imaging [J].
Beard, Paul .
INTERFACE FOCUS, 2011, 1 (04) :602-631
[13]   A 3-D High-Frequency Array Based 16 Channel Photoacoustic Microscopy System for In Vivo Micro- Vascular Imaging [J].
Bitton, Rachel ;
Zemp, Roger ;
Yen, Jesse ;
Wang, Lihong V. ;
Shung, K. Kirk .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1190-1197
[14]  
Bost W., 2009, ULTR S IUS 2009 IEEE, P120
[15]   High Frequency Optoacoustic Microscopy [J].
Bost, Wolfgang ;
Stracke, Frank ;
Weiss, Eike C. ;
Narasimhan, Sankar ;
Kolios, Michael C. ;
Lemor, Robert .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :5883-+
[16]   Nanoparticle and targeted systems for cancer therapy [J].
Brannon-Peppas, L ;
Blanchette, JO .
ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (11) :1649-1659
[17]   Whole-body three-dimensional optoacoustic tomography system for small animals [J].
Brecht, Hans-Peter ;
Su, Richard ;
Fronheiser, Matthew ;
Ermilov, Sergey A. ;
Conjusteau, Andre ;
Oraevsky, Alexander A. .
JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (06)
[18]  
Brunker J., 2010, P SOC PHOTO-OPT INS, V7564
[19]  
Bulte J W. M., 2007, Nanoparticles in Biomedical Imaging, V3
[20]   Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface [J].
Burgholzer, Peter ;
Matt, Gebhard J. ;
Haltmeier, Markus ;
Paltauf, Guenther .
PHYSICAL REVIEW E, 2007, 75 (04)