Dual time point based quantification of metabolic uptake rates in 18F-FDG PET

被引:18
作者
van den Hoff, Joerg [1 ,2 ]
Hofheinz, Frank [1 ]
Oehme, Liane [2 ]
Schramm, Georg [1 ]
Langner, Jens [1 ]
Beuthien-Baumann, Bettina [1 ,2 ]
Steinbach, Joerg [1 ]
Kotzerke, Joerg [1 ,2 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, PET Ctr, Inst Radiopharmaceut Canc Res, D-01328 Dresden, Germany
[2] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dept Nucl Med, D-01307 Dresden, Germany
来源
EJNMMI RESEARCH | 2013年 / 3卷
关键词
Whole-body PET; Dual time point; Metabolic rate of FDG; PET quantification; Tracer kinetic modeling; POSITRON-EMISSION-TOMOGRAPHY; BRAIN TRANSFER CONSTANTS; GRAPHICAL EVALUATION; SUV;
D O I
10.1186/2191-219X-3-16
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Assessment of dual time point (DTP) positron emission tomography was carried out with the aim of a quantitative determination of K-m, the metabolic uptake rate of [18F]fluorodeoxyglucose as a measure of glucose consumption. Methods: Starting from the Patlak equation, it is shown that K-m approximate to mt/c(a)(0) + (V-r) over bar/tau(a), where m(t) is the secant slope of the tissue response function between the dual time point measurements centered at t = t(0). c(a)(0) = c(a)(t(0)) denotes arterial tracer concentration, (V-r) over bar is an estimate of the Patlak intercept, and tau(a) is the time constant of the c(a)(t) decrease. We compared the theoretical predictions with the observed relation between K-s = m(t)/c(a)(0) and K-m in a group of nine patients with liver metastases of colorectal cancer for which dynamic scans were available, and K-m was derived from conventional Patlak analysis. Twenty-two lesion regions of interest (ROIs) were evaluated. c(a)(t) was determined from a three-dimensional ROI in the aorta. Furthermore, the correlation between K-m and late standard uptake value (SUV) as well as retention index was investigated. Additionally, feasibility of the approach was demonstrated in a whole-body investigation. Results: Patlak analysis yielded a mean Vr of (V-r) over bar = 0.53 +/- 0.08 ml/ml. The patient averaged tau(a) was 99 +/- 23 min. Linear regression between Patlak-derived K-m and DTP-derived K-s according to K-s = b . K-m + a yielded b = 0.98 +/- 0.05 and a = -0.0054 +/- 0.0013 ml/min/ml (r = 0.98) in full accordance with the theoretical predictions b = 1 and a approximate to -(V-r) over bar/tau(a). K-s exhibits better correlation with K-m than late SUV and retention index, respectively. K-s((c)) = Ks + (V-r) over bar/tau(a) is proposed as a quantitative estimator of K-m which is independent of patient weight, scan time, and scanner calibration. Conclusion: Quantification of K-m from dual time point measurements compatible with clinical routine is feasible. The proposed approach eliminates the issues of static SUV and conventional DTP imaging regarding influence of chosen scanning times and inter-study variability of the input function. K-s and K-s((c)) exhibit improved stability and better correlation with the true K-m. These properties might prove especially relevant in the context of radiation treatment planning and therapy response control.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 18 条
[11]  
KEYES JW, 1995, J NUCL MED, V36, P1836
[12]   Potential value of dual-time-point 18F-FDG PET compared with initial single-time-point imaging in differentiating malignant from benign pulmonary nodules: a systematic review and meta-analysis [J].
Lin, Yu-Yi ;
Chen, Jin-Hua ;
Ding, Hueisch-Jy ;
Liang, Ji-An ;
Yeh, Jun-Jun ;
Kao, Chia-Hung .
NUCLEAR MEDICINE COMMUNICATIONS, 2012, 33 (10) :1011-1018
[13]   GRAPHICAL EVALUATION OF BLOOD-TO-BRAIN TRANSFER CONSTANTS FROM MULTIPLE-TIME UPTAKE DATA - GENERALIZATIONS [J].
PATLAK, CS ;
BLASBERG, RG .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1985, 5 (04) :584-590
[14]   GRAPHICAL EVALUATION OF BLOOD-TO-BRAIN TRANSFER CONSTANTS FROM MULTIPLE-TIME UPTAKE DATA [J].
PATLAK, CS ;
BLASBERG, RG ;
FENSTERMACHER, JD .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1983, 3 (01) :1-7
[15]  
ROVER, 2008, ROVER ROVER ROI VIS
[16]   Assessment of quantitative FDG PET data in primary colorectal tumours:: which parameters are important with respect to tumour detection? [J].
Strauss, Ludwig G. ;
Klippel, Sven ;
Pan, Leyun ;
Schoenleben, Klaus ;
Dimitrakopoulou-Strauss, Antonia .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2007, 34 (06) :868-877
[17]   From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors [J].
Wahl, Richard L. ;
Jacene, Heather ;
Kasamon, Yvette ;
Lodge, Martin A. .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 :122S-150S
[18]  
Zhuang HM, 2001, J NUCL MED, V42, P1412