Characterization of the parameter-mismatching effect on the loss of chaos synchronization

被引:34
作者
Jalnine, A
Kim, SY
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Nonlinear Proc, Saratov 410026, Russia
[2] Kangwon Natl Univ, Dept Phys, Chunchon 200701, Kangwon Do, South Korea
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 02期
关键词
D O I
10.1103/PhysRevE.65.026210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the effect of the parameter mismatch on the loss of chaos synchronization in coupled one-dimensional maps. Loss of strong synchronization begins with a first transverse bifurcation of a periodic saddle embedded in the synchronous chaotic attractor (SCA), and then the SCA becomes weakly stable. Because of local transverse repulsion of the periodic repellers embedded in the weakly stable SCA, a typical trajectory may have segments of arbitrary length that have positive local transverse Lyapunov exponents. Consequently, the weakly stable SCA becomes sensitive with respect to the variation of the mismatching parameter. To quantitatively characterize such parameter sensitivity, we introduce a quantifier, called the parameter sensitivity exponent (PSE). As the local transverse repulsion of the periodic repellers strengthens, the value of the PSE increases. In terms of these PSEs, we also characterize the parameter-mismatching effect on the intermittent bursting and basin riddling occurring in the regime of weak synchronization.
引用
收藏
页码:1 / 026210
页数:7
相关论文
共 34 条
[11]   Mechanism for the riddling transition in coupled chaotic systems [J].
Kim, SY ;
Lim, W .
PHYSICAL REVIEW E, 2001, 63 (02)
[12]   CRITICAL-BEHAVIOR IN COUPLED NONLINEAR-SYSTEMS [J].
KIM, SY ;
KOOK, H .
PHYSICAL REVIEW A, 1992, 46 (08) :R4467-R4470
[13]   New riddling bifurcation in asymmetric dynamical systems [J].
Kim, SY ;
Lin, W ;
Kim, Y .
PROGRESS OF THEORETICAL PHYSICS, 2001, 105 (02) :187-196
[14]  
KIM SY, IN PRESS PROG THEOR
[15]   GENERAL-APPROACH FOR CHAOTIC SYNCHRONIZATION WITH APPLICATIONS TO COMMUNICATION [J].
KOCAREV, L ;
PARLITZ, U .
PHYSICAL REVIEW LETTERS, 1995, 74 (25) :5028-5031
[16]   Riddling bifurcation in chaotic dynamical systems [J].
Lai, YC ;
Grebogi, C ;
Yorke, JA ;
Venkataramani, SC .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :55-58
[17]   Desynchronization of chaos in coupled logistic maps [J].
Maistrenko, YL ;
Maistrenko, VL ;
Popovych, O ;
Mosekilde, E .
PHYSICAL REVIEW E, 1999, 60 (03) :2817-2830
[18]   Role of the absorbing area in chaotic synchronization [J].
Maistrenko, YL ;
Maistrenko, VL ;
Popovich, A ;
Mosekilde, E .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1638-1641
[19]   Transverse instability and riddled basins in a system of two coupled logistic maps [J].
Maistrenko, YL ;
Maistrenko, VL ;
Popovich, A ;
Mosekilde, E .
PHYSICAL REVIEW E, 1998, 57 (03) :2713-2724
[20]   Periodic-orbit theory of the blowout bifurcation [J].
Nagai, Y ;
Lai, YC .
PHYSICAL REVIEW E, 1997, 56 (04) :4031-4041