Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure

被引:1416
作者
Hunt, B. [1 ]
Sanchez-Yamagishi, J. D. [1 ]
Young, A. F. [1 ]
Yankowitz, M. [2 ]
LeRoy, B. J. [2 ]
Watanabe, K. [3 ]
Taniguchi, T. [3 ]
Moon, P. [4 ]
Koshino, M. [4 ]
Jarillo-Herrero, P. [1 ]
Ashoori, R. C. [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[3] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
[4] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
基金
美国国家科学基金会; 日本学术振兴会;
关键词
HEXAGONAL BORON-NITRIDE; ENERGY-SPECTRUM; BLOCH ELECTRONS; MAGNETIC-FIELD; GRAPHENE; SUPERLATTICES; STATES;
D O I
10.1126/science.1237240
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
van der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moire superlattice potential in the graphene. In our samples, this interplay between short- and long-wavelength effects resulted in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality. This picture is confirmed by our observation of fractional quantum Hall states at +/- 5/3 filling and features associated with the Hofstadter butterfly at ultrahigh magnetic fields.
引用
收藏
页码:1427 / 1430
页数:4
相关论文
共 32 条
[1]   Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance [J].
Albrecht, C ;
Smet, JH ;
von Klitzing, K ;
Weiss, D ;
Umansky, V ;
Schweizer, H .
PHYSICAL REVIEW LETTERS, 2001, 86 (01) :147-150
[2]   Insulating Behavior at the Neutrality Point in Single-Layer Graphene [J].
Amet, F. ;
Williams, J. R. ;
Watanabe, K. ;
Taniguchi, T. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (21)
[3]   Fractional quantum Hall states of Dirac electrons in graphene [J].
Apalkov, Vadim M. ;
Chakraborty, Tapash .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[4]   SINGLE-ELECTRON CAPACITANCE SPECTROSCOPY OF DISCRETE QUANTUM LEVELS [J].
ASHOORI, RC ;
STORMER, HL ;
WEINER, JS ;
PFEIFFER, LN ;
PEARTON, SJ ;
BALDWIN, KW ;
WEST, KW .
PHYSICAL REVIEW LETTERS, 1992, 68 (20) :3088-3091
[5]  
AZBEL MY, 1964, SOV PHYS JETP-USSR, V19, P634
[6]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[7]  
Dean CR, 2011, NAT PHYS, V7, P693, DOI [10.1038/NPHYS2007, 10.1038/nphys2007]
[8]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[9]   Unconventional Sequence of Fractional Quantum Hall States in Suspended Graphene [J].
Feldman, Benjamin E. ;
Krauss, Benjamin ;
Smet, Jurgen H. ;
Yacoby, Amir .
SCIENCE, 2012, 337 (6099) :1196-1199
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191