共 56 条
IFNβ/TNFα synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH Oxidase-mediated airway antiviral response
被引:57
作者:
Fink, Karin
[1
,2
]
Martin, Lydie
[1
]
Mukawera, Esperance
[1
]
Chartier, Stefany
[1
]
De Deken, Xavier
[3
]
Brochiero, Emmanuelle
[1
,4
]
Miot, Francoise
[3
]
Grandvaux, Nathalie
[1
,2
]
机构:
[1] CRCHUM, Montreal, PQ H2X 1P1, Canada
[2] Univ Montreal, Fac Med, Dept Biochem, Montreal, PQ H3T 1J4, Canada
[3] Univ Libre Bruxelles, Inst Rech Interdisciplinaire Biol Humaine & Mol, B-1070 Brussels, Belgium
[4] Univ Montreal, Fac Med, Dept Med, Montreal, PQ H3T 1J4, Canada
基金:
加拿大自然科学与工程研究理事会;
加拿大健康研究院;
关键词:
antiviral;
cell signaling;
innate immunity;
inflammation;
NADPH oxidase;
interferon;
RESPIRATORY-SYNCYTIAL-VIRUS;
NF-KAPPA-B;
TUMOR-NECROSIS-FACTOR;
DUAL OXIDASE;
EPITHELIAL-CELLS;
INTERFERON-RESPONSE;
GENE-EXPRESSION;
CYSTIC-FIBROSIS;
TH2;
CYTOKINES;
HOST-DEFENSE;
D O I:
10.1038/cr.2013.47
中图分类号:
Q2 [细胞生物学];
学科分类号:
071009 ;
090102 ;
摘要:
Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFN beta secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFN beta and TNF alpha, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction.
引用
收藏
页码:673 / 690
页数:18
相关论文