Prediction Errors in Learning Drug Response from Gene Expression Data - Influence of Labeling, Sample Size, and Machine Learning Algorithm

被引:15
作者
Bayer, Immanuel [1 ]
Groth, Philip [2 ]
Schneckener, Sebastian [3 ]
机构
[1] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, Aachen, Germany
[2] Bayer Pharma AG, Therapeut Res Grp, Berlin, Germany
[3] Bayer Technol Serv GmbH, Syst Biol, Leverkusen, Germany
来源
PLOS ONE | 2013年 / 8卷 / 07期
关键词
MICROARRAY; SELECTION; REGULARIZATION; CLASSIFICATION; UPDATE;
D O I
10.1371/journal.pone.0070294
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two-or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.
引用
收藏
页数:13
相关论文
共 33 条
[21]   ArrayExpress update-from an archive of functional genomics experiments to the atlas of gene expression [J].
Parkinson, Helen ;
Kapushesky, Misha ;
Kolesnikov, Nikolay ;
Rustici, Gabriella ;
Shojatalab, Mohammad ;
Abeygunawardena, Niran ;
Berube, Hugo ;
Dylag, Miroslaw ;
Emam, Ibrahim ;
Farne, Anna ;
Holloway, Ele ;
Lukk, Margus ;
Malone, James ;
Mani, Roby ;
Pilicheva, Ekaterina ;
Rayner, Tim F. ;
Rezwan, Faisal ;
Sharma, Anjan ;
Williams, Eleanor ;
Bradley, Xiangqun Zheng ;
Adamusiak, Tomasz ;
Brandizi, Marco ;
Burdett, Tony ;
Coulson, Richard ;
Krestyaninova, Maria ;
Kurnosov, Pavel ;
Maguire, Eamonn ;
Neogi, Sudeshna Guha ;
Rocca-Serra, Philippe ;
Sansone, Susanna-Assunta ;
Sklyar, Nataliya ;
Zhao, Mengyao ;
Sarkans, Ugis ;
Brazma, Alvis .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D868-D872
[22]  
Provost F., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P445
[23]   CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set [J].
Reinhold, William C. ;
Sunshine, Margot ;
Liu, Hongfang ;
Varma, Sudhir ;
Kohn, Kurt W. ;
Morris, Joel ;
Doroshow, James ;
Pommier, Yves .
CANCER RESEARCH, 2012, 72 (14) :3499-3511
[24]   Predicting in vitro drug sensitivity using Random Forests [J].
Riddick, Gregory ;
Song, Hua ;
Ahn, Susie ;
Walling, Jennifer ;
Borges-Rivera, Diego ;
Zhang, Wei ;
Fine, Howard A. .
BIOINFORMATICS, 2011, 27 (02) :220-224
[25]  
Sayers EW, 2012, NUCLEIC ACIDS RES, V40, pD13, DOI [10.1093/nar/gkr1184, 10.1093/nar/gky1069, 10.1093/nar/gks1189]
[26]   Quantifying stability in gene list ranking across microarray derived clinical biomarkers [J].
Schneckener, Sebastian ;
Arden, Nilou S. ;
Schuppert, Andreas .
BMC MEDICAL GENOMICS, 2011, 4
[27]   The MicroArray Quality Control (MAQC)-IIII study of common practices for the development and validation of microarray-based predictive models [J].
Shi, Leming ;
Campbell, Gregory ;
Jones, Wendell D. ;
Campagne, Fabien ;
Wen, Zhining ;
Walker, Stephen J. ;
Su, Zhenqiang ;
Chu, Tzu-Ming ;
Goodsaid, Federico M. ;
Pusztai, Lajos ;
Shaughnessy, John D., Jr. ;
Oberthuer, Andre ;
Thomas, Russell S. ;
Paules, Richard S. ;
Fielden, Mark ;
Barlogie, Bart ;
Chen, Weijie ;
Du, Pan ;
Fischer, Matthias ;
Furlanello, Cesare ;
Gallas, Brandon D. ;
Ge, Xijin ;
Megherbi, Dalila B. ;
Symmans, W. Fraser ;
Wang, May D. ;
Zhang, John ;
Bitter, Hans ;
Brors, Benedikt ;
Bushel, Pierre R. ;
Bylesjo, Max ;
Chen, Minjun ;
Cheng, Jie ;
Cheng, Jing ;
Chou, Jeff ;
Davison, Timothy S. ;
Delorenzi, Mauro ;
Deng, Youping ;
Devanarayan, Viswanath ;
Dix, David J. ;
Dopazo, Joaquin ;
Dorff, Kevin C. ;
Elloumi, Fathi ;
Fan, Jianqing ;
Fan, Shicai ;
Fan, Xiaohui ;
Fang, Hong ;
Gonzaludo, Nina ;
Hess, Kenneth R. ;
Hong, Huixiao ;
Huan, Jun .
NATURE BIOTECHNOLOGY, 2010, 28 (08) :827-U109
[28]   A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification [J].
Statnikov, Alexander ;
Wang, Lily ;
Aliferis, Constantin F. .
BMC BIOINFORMATICS, 2008, 9 (1)
[29]  
Therneau TerryM., 2011, RPART RECURSIVE PART