Prediction and interpretation of distributed neural activity with sparse models

被引:122
作者
Carroll, Melissa K. [2 ]
Cecchi, Guillermo A. [1 ]
Rish, Irina [1 ]
Garg, Rahul [1 ]
Rao, A. Ravishankar [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Computat Biol Ctr, Yorktown Hts, NY 10598 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
关键词
RESONANCE-IMAGING FMRI; VARIABLE SELECTION; WORKING-MEMORY; REGRESSION; CORTEX; LASSO;
D O I
10.1016/j.neuroimage.2008.08.020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We explore to what extent the combination of predictive and interpretable modeling can provide new insights for functional brain imaging. For this, we apply a recently introduced regularized regression technique, the Elastic Net, to the analysis of the PBAIC 2007 competition data. Elastic Net regression controls via one parameter the number of voxels in the resulting model, and via another the degree to which correlated voxels are included. We find that this method produces highly predictive models of fMRI data that provide evidence for the distributed nature of neural function. We also use the flexibility of Elastic Net to demonstrate that model robustness can be improved without compromising predictability, in turn revealing the importance of localized clusters of activity. Our findings highlight the functional significance of patterns of distributed clusters of localized activity, and underscore the importance of models that are both predictive and interpretable. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 21 条
[11]   Penalized regressions: The bridge versus the lasso [J].
Fu, WJJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (03) :397-416
[12]   Distributed and overlapping representations of faces and objects in ventral temporal cortex [J].
Haxby, JV ;
Gobbini, MI ;
Furey, ML ;
Ishai, A ;
Schouten, JL ;
Pietrini, P .
SCIENCE, 2001, 293 (5539) :2425-2430
[13]  
Hoerl A., 1988, Encyclopedia of Statistical Sciences, V8, DOI [DOI 10.1002/0471667196.ESS2280.PUB2, 10.1002/0471667196.ess2280.pub2]
[14]   Learning to decode cognitive states from brain images [J].
Mitchell, TM ;
Hutchinson, R ;
Niculescu, RS ;
Pereira, F ;
Wang, XR ;
Just, M ;
Newman, S .
MACHINE LEARNING, 2004, 57 (1-2) :145-175
[15]   Beyond mind-reading: multi-voxel pattern analysis of fMRI data [J].
Norman, Kenneth A. ;
Polyn, Sean M. ;
Detre, Greg J. ;
Haxby, James V. .
TRENDS IN COGNITIVE SCIENCES, 2006, 10 (09) :424-430
[16]  
*PITTSB EBC GROUP, 2007, PBAIC HOM
[17]  
Sjostrand K., 2005, MATLAB IMPLEMENTATIO
[19]   Sparse variable principal component analysis with application to fMRI [J].
Ulfarsson, Magnus O. ;
Solo, Victor .
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, :460-+
[20]  
Weisberg S., 1980, APPL LINEAR REGRESSI