Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces

被引:52
作者
Xu, F. J. [1 ,2 ]
Li, H. Z. [3 ]
Li, J. [2 ,3 ]
Teo, Y. H. Eric [4 ]
Zhu, C. X. [4 ]
Kang, E. T. [1 ]
Neoh, K. G. [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
[2] Natl Univ Singapore, Div Bioengn, Singapore 117602, Singapore
[3] Inst Mat Res & Engn, Singapore 117602, Singapore
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119260, Singapore
关键词
Micropatterning; Protein; Biosensor; ATRP; PEG;
D O I
10.1016/j.bios.2008.06.055
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micro patterned Si(I 0 0) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:773 / 780
页数:8
相关论文
共 25 条
[1]   Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces [J].
Andruzzi, L ;
Senaratne, W ;
Hexemer, A ;
Sheets, ED ;
Ilic, B ;
Kramer, EJ ;
Baird, B ;
Ober, CK .
LANGMUIR, 2005, 21 (06) :2495-2504
[2]  
Bernard A, 2000, ADV MATER, V12, P1067, DOI 10.1002/1521-4095(200007)12:14<1067::AID-ADMA1067>3.0.CO
[3]  
2-M
[4]   Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture [J].
Branch, DW ;
Wheeler, BC ;
Brewer, GJ ;
Leckband, DE .
BIOMATERIALS, 2001, 22 (10) :1035-1047
[5]   In situ observation of biomolecules patterned on a PEG-modified Si surface by scanning probe lithography [J].
Choi, Inhee ;
Kang, Sung Koo ;
Lee, Jeongjin ;
Kim, Younghun ;
Yi, Jongheop .
BIOMATERIALS, 2006, 27 (26) :4655-4660
[6]   OPTIMIZATION OF PROTEIN IMMOBILIZATION ON 1,1'-CARBONYLDIIMIDAZOLE-ACTIVATED DIOL-BONDED SILICA [J].
CROWLEY, SC ;
CHAN, KC ;
WALTERS, RR .
JOURNAL OF CHROMATOGRAPHY, 1986, 359 :359-368
[7]   Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length [J].
Fan, Xiaowu ;
Lin, Lijun ;
Messersmith, Phillip B. .
BIOMACROMOLECULES, 2006, 7 (08) :2443-2448
[8]   Using biofunctionalized nanoparticles to probe pathogenic bacteria [J].
Ho, KC ;
Tsai, PJ ;
Lin, YS ;
Chen, YC .
ANALYTICAL CHEMISTRY, 2004, 76 (24) :7162-7168
[9]   Patterned protein microarrays for bacterial detection [J].
Howell, SW ;
Inerowicz, HD ;
Regnier, FE ;
Reifenberger, R .
LANGMUIR, 2003, 19 (02) :436-439
[10]   Ultrasensitive detection of biomolecules using functionalized multi-walled carbon nanotubes [J].
Hu, PingAn ;
Tanii, Takashi ;
Zhang, Guo-Jun ;
Hosaka, Takumi ;
Ohdomari, Iwao .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 124 (01) :161-166