Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins

被引:23
作者
LeBard, David N. [1 ]
Matyushov, Dmitry V. [1 ]
机构
[1] Arizona State Univ, Ctr Biol Phys, Tempe, AZ 85287 USA
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
关键词
molecular biophysics; molecular dynamics method; proteins;
D O I
10.1103/PhysRevE.78.061901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein-water interface, allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at similar or equal to 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line or undergoing a weak first-order transition.
引用
收藏
页数:9
相关论文
共 57 条
[1]   Insights into phases of liquid water from study of its unusual glass-forming properties [J].
Angell, C. Austen .
SCIENCE, 2008, 319 (5863) :582-587
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]  
Binder K., 1992, MONTE CARLO SIMULATI
[4]   Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models [J].
Brovchenko, I ;
Geiger, A ;
Oleinikova, A .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (04)
[5]   Dielectric investigation of the temperature dependence of the dynamics of a hydrated protein [J].
Bruni, F ;
Pagnotta, SE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (08) :1912-1919
[6]   Dynamic transition in tRNA is solvent induced [J].
Caliskan, G ;
Briber, RM ;
Thirumalai, D ;
Garcia-Sakai, V ;
Woodson, SA ;
Sokolov, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (01) :32-33
[7]   Interfaces and the driving force of hydrophobic assembly [J].
Chandler, D .
NATURE, 2005, 437 (7059) :640-647
[8]   Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water [J].
Chen, S. -H. ;
Liu, L. ;
Chu, X. ;
Zhang, Y. ;
Fratini, E. ;
Baglioni, P. ;
Faraone, A. ;
Mamontov, E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (17)
[9]   Observation of fragile-to-strong dynamic crossover in protein hydration water [J].
Chen, S. -H. ;
Liu, L. ;
Fratini, E. ;
Baglioni, Piero ;
Faraone, A. ;
Mamontov, E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (24) :9012-9016
[10]   Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions [J].
Dadarlat, Voichita M. ;
Post, Carol Beth .
BIOPHYSICAL JOURNAL, 2006, 91 (12) :4544-4554