Hydrogenation of polycrystalline silicon thin films

被引:10
作者
Honda, S
Mates, I
Knízek, K
Ledinsky, M
Fejfar, A
Kocka, J
Yamazaki, T
Uraoka, Y
Fuyuki, T
机构
[1] Acad Sci Czech Republic, Inst Phys, Prague 16253 6, Czech Republic
[2] Nara Inst Sci & Technol, Grad Sch Mat Sci, Nara 6300192, Japan
关键词
polycrystalline silicon; atmospheric pressure chemical vapour deposition; hydrogen passivation; photoluminescence; Raman spectroscopy; Si-H-2; bonding; hydrogen molecules;
D O I
10.1016/j.tsf.2005.07.144
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polycrystalline silicon films for solar cells grown by atmospheric pressure chemical vapour deposition require hydrogenation to passivate defects at grain boundaries. Passivation by remote plasma hydrogenation of 12-mu m-thick poly-Si films increased Hall effect carrier mobility from 3 to 20 cm(2)/Vs, photoluminescence intensity at 0.98 eV band more than 2 times and decreased contrast of local electronic conductivity between grains, observed by combined AFM. However, excessive hydrogenation led to surface damage and defect creation evidenced by widths of Raman LO-TO peak at 520 cm(-1) and X-ray rocking curve of (220) diffraction line. Depth profile by repeated etching of the surface and following the signature of Si-H-2 and H-2 bonding in Raman spectra showed that the damage extended up to 100 nm from the surface. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 148
页数:5
相关论文
共 11 条
[1]  
ABRAMOF E, 2000, NUCL INSTRUM METHODS, V1054, pB161
[2]  
HONDA S, 2004, INT C POL SEM, P9
[3]   Thin film poly-Si solar cells with film thickness of 10 microns fabricated by direct deposition using APCVD method [J].
Ishikawa, Y ;
Nishioka, K ;
Yamamoto, Y ;
Uraoka, Y ;
Fuyuki, T .
CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, :1294-1297
[4]   Finding interstitial oxygen in an Si substrate during low-temperature plasma oxidation [J].
Kim, BH ;
Ahn, JH ;
Ahn, BT .
APPLIED PHYSICS LETTERS, 2003, 82 (16) :2682-2684
[5]   Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy [J].
Kitahara, K ;
Ohnishi, K ;
Katoh, Y ;
Yamazaki, R ;
Kurosawa, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (11) :6742-6747
[6]   Correlation between electron mobility and silicon-hydrogen bonding configurations in plasma-hydrogenated polycrystalline silicon thin films [J].
Kitahara, K ;
Murakami, S ;
Hara, A ;
Nakajima, K .
APPLIED PHYSICS LETTERS, 1998, 72 (19) :2436-2438
[7]   Formation of hydrogen molecules in crystalline silicon [J].
Leitch, AWR ;
Weber, J ;
Alex, V .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 58 (1-2) :6-12
[8]   Local characterization of electronic transport in microcrystalline silicon thin films with submicron resolution [J].
Rezek, B ;
Stuchlík, J ;
Fejfar, A ;
Kocka, J .
APPLIED PHYSICS LETTERS, 1999, 74 (10) :1475-1477
[9]   BAND-TAIL PHOTOLUMINESCENCE IN POLYCRYSTALLINE SILICON THIN-FILMS [J].
SAVCHOUK, AU ;
OSTAPENKO, S ;
NOWAK, G ;
LAGOWSKI, J ;
JASTRZEBSKI, L .
APPLIED PHYSICS LETTERS, 1995, 67 (01) :82-84
[10]   ELECTRICAL PROPERTIES OF POLYCRYSTALLINE SILICON FILMS [J].
SETO, JYW .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (12) :5247-5254