Potential improvements in the therapeutic ratio of prostate cancer irradiation: dose escalation of pathologically identified tumour nodules using intensity modulated radiotherapy

被引:59
作者
Nutting, CM
Corbishley, CM
Sanchez-Nieto, B
Cosgrove, VP
Webb, S
Dearnaley, DP
机构
[1] Royal Marsden NHS Trust, Sutton SM2 5PT, Surrey, England
[2] Inst Canc Res, Dept Radiotherapy, Sutton SM2 5PT, Surrey, England
[3] Inst Canc Res, Joint Dept Phys, Sutton SM2 5PT, Surrey, England
[4] Univ London St Georges Hosp, Dept Histopathol, London, England
关键词
D O I
10.1259/bjr.75.890.750151
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The potential of intensity modulated radiotherapy (IMRT) to improve the therapeutic ratio in prostate cancer by dose escalation of intraprostatic tumour nodules (IPTNs) was investigated using a simultaneous integrated boost technique. The prostate and organs-at-risk were outlined on CT images from six prostate cancer patients. Positions of IPTNs were transferred onto the CT images from prostate maps derived from sequential large block sections of whole prostatectomy specimens. Inverse planned IMRT dose distributions were created to irradiate the prostate to 70 Gy and all the IPTNs to 90 Gy. A second plan was produced to escalate only the dominant IPTN (DIPTN) to 90 Gy, mimicking current imaging techniques. These plans were compared with homogeneous prostate irradiation to 70 Gy using dose-volume histograms, tumour control probability (TCP) and normal tissue complication probability (NTCP) for the rectum. The mean dose to IPTNs was increased from 69.8 Gy to 89.1 Gy if all the IPTNs were dose escalated (p=0.0003). This corresponded to a mean increase in TCP of 8.7-31.2% depending on the alpha/beta ratio of prostate cancer (p<0.001), and a mean increase in rectal NTCP of 3.0% (p<0.001). If only the DIPTN was dose escalated, the TCP was increased by 6.4-27.5% (p<0.003) and the rectal NTCP was increased by 1.8% (p<0.01). In the dose escalated DIPTN IMRT plans, the highest rectal NTCP was seen in patients with IPTNs in the posterior peripheral zone close to the anterior rectal wall, and the lowest NTCP was seen with IPTNs in the lateral peripheral zone. The ratio of increased TCP to NTCP may represent an improvement in the therapeutic ratio, but was dependent on the position of the IPTN relative to the anterior rectal wall. Improvements in prostate imaging and prostate immobilization are required before clinical implementation would be possible. Clinical trials are required to confirm the clinical benefits of these improved dose distributions.
引用
收藏
页码:151 / 161
页数:11
相关论文
共 59 条
[1]  
AMER AM, 2001, INT J RADIAT ONCOL, V49, P487
[2]  
AMER AM, 2001, IN PRESS INT J RAD O
[3]   Optimization of coplanar six-field techniques for conformal radiotherapy of the prostate [J].
Bedford, JL ;
Khoo, VS ;
Webb, S ;
Dearnaley, DP .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 46 (01) :231-238
[4]   High-precision conformal radiotherapy (HPCRT) of prostate cancer -: A new technique for exact positioning of the prostate at the time of treatment [J].
Bergström, P ;
Löfroth, PO ;
Widmark, A .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 42 (02) :305-311
[5]   In response to Drs. King and Mayo:: Low α/β values for prostate appear to be independent of modeling details [J].
Brenner, DJ ;
Hall, EJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 47 (02) :538-539
[6]   Fractionation and protraction for radiotherapy of prostate carcinoma [J].
Brenner, DJ ;
Hall, EJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 43 (05) :1095-1101
[7]   Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate [J].
Burman, C ;
Chui, CS ;
Kutcher, G ;
Leibel, S ;
Zelefsky, M ;
LoSasso, T ;
Spirou, S ;
Wu, QW ;
Yang, J ;
Stein, J ;
Mohan, R ;
Fuks, Z ;
Ling, CC .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 39 (04) :863-873
[8]   FITTING OF NORMAL TISSUE TOLERANCE DATA TO AN ANALYTIC-FUNCTION [J].
BURMAN, C ;
KUTCHER, GJ ;
EMAMI, B ;
GOITEIN, M .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1991, 21 (01) :123-135
[9]   Smart (simultaneous modulated accelerated radiation therapy) boost: A new accelerated fractionation schedule for the treatment of head and neck cancer with intensity modulated radiotherapy [J].
Butler, EB ;
Teh, BS ;
Grant, WH ;
Uhl, BM ;
Kuppersmith, RB ;
Chiu, JK ;
Donovan, DT ;
Woo, SY .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 45 (01) :21-32
[10]   A comparison of three stereotactic radiotherapy techniques; arcs vs. noncoplanar fixed fields vs. intensity modulation [J].
Cardinale, RM ;
Benedict, SH ;
Wu, QW ;
Zwicker, RD ;
Gaballa, HE ;
Mohan, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 42 (02) :431-436