Quantum algebraic structures compatible with the harmonic oscillator Newton equation

被引:48
作者
Arik, M [1 ]
Atakishiyev, NM
Wolf, KB
机构
[1] Bogazici Univ, Dept Phys, Istanbul, Turkey
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca 62191, Morelos, Mexico
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62191, Morelos, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 33期
关键词
D O I
10.1088/0305-4470/32/33/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study some of the algebraic structures that are compatible with the quantization of the harmonic oscillator through its Newton equation. Examples of such structures are given; they include undeformed and q-deformed oscillators, as well as the SU(2) and the deformed SUq(2) Lie algebras, which appear in a variety of physical models.
引用
收藏
页码:L371 / L376
页数:6
相关论文
共 23 条
[11]   OPERATOR FORMULATION OF A DUAL MULTIPARTICLE THEORY WITH NONLINEAR TRAJECTORIES [J].
COON, DD ;
BAKER, M ;
YU, S .
PHYSICAL REVIEW D, 1972, 5 (06) :1429-&
[12]  
DASKALOYANNIS C, 1991, J PHYS A, V24, P789
[13]   REMARKS ON THE Q-QUANTIZATION [J].
JANNUSSIS, A ;
BRODIMAS, G ;
SOURLAS, D ;
ZISIS, V .
LETTERE AL NUOVO CIMENTO, 1981, 30 (04) :123-127
[14]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[15]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[16]   ON THE Q-OSCILLATOR AND THE QUANTUM ALGEBRA SUQ (1,1) [J].
KULISH, PP ;
DAMASKINSKY, EV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :L415-L419
[17]  
KURYSHKIN V, 1980, ANN F L DEBROGLIE, V5, P111
[18]   ON Q-ANALOGUES OF THE QUANTUM HARMONIC-OSCILLATOR AND THE QUANTUM GROUP SU(2)Q [J].
MACFARLANE, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (21) :4581-4588
[19]   Wigner distribution function for Euclidean systems [J].
Nieto, LM ;
Atakishiyev, NM ;
Chumakov, SM ;
Wolf, KB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3875-3895
[20]   New generalized coherent states [J].
Penson, KA ;
Solomon, AI .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2354-2363