Static and dynamic properties of a viscous silica melt

被引:373
作者
Horbach, J [1 ]
Kob, W [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 05期
关键词
D O I
10.1103/PhysRevB.60.3169
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10(-2)) P to O(10(2)) P. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants D shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a crossover to one which can be described well by a power law, D-proportional to(T - T-c)(gamma). The critical temperature T-c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar crossover in the viscosity, we have evidence that the relaxation dynamics of the system changes from a flowlike motion of the particles, as described by the ideal version of mode-coupling theory, to a hoppinglike motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the lifetime of a Si-O bond or the space and time dependence of the van Hove correlation functions. [S0163-1829(99)01329-6].
引用
收藏
页码:3169 / 3181
页数:13
相关论文
共 89 条
[11]   DYNAMIC LIGHT-SCATTERING STUDY OF CONCENTRATED MICROGEL SOLUTIONS AS MESOSCOPIC MODEL OF THE GLASS-TRANSITION IN QUASI-ATOMIC FLUIDS [J].
BARTSCH, E ;
ANTONIETTI, M ;
SCHUPP, W ;
SILLESCU, H .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06) :3950-3963
[12]   Evidence of high frequency propagating modes in vitreous silica [J].
Benassi, P ;
Krisch, M ;
Masciovecchio, C ;
Mazzacurati, V ;
Monaco, G ;
Ruocco, G ;
Sette, F ;
Verbeni, R .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3835-3838
[13]   SOFT-SPHERE MODEL FOR THE GLASS-TRANSITION IN BINARY-ALLOYS - PAIR STRUCTURE AND SELF-DIFFUSION [J].
BERNU, B ;
HANSEN, JP ;
HIWATARI, Y ;
PASTORE, G .
PHYSICAL REVIEW A, 1987, 36 (10) :4891-4903
[14]  
Boon J. P., 1980, MOL HYDRODYNAMICS
[15]  
Bouchaud J-P., 1998, Spin Glasses and Random Fields, Vvol 12, DOI DOI 10.1142/97898128194370006
[16]   Mode-coupling approximations, glass theory and disordered systems [J].
Bouchaud, JP ;
Cugliandolo, L ;
Kurchan, J ;
Mezard, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 226 (3-4) :243-273
[17]   DIFFUSION OF SILICON IN AMORPHOUS SILICA [J].
BREBEC, G ;
SEGUIN, R ;
SELLA, C ;
BEVENOT, J ;
MARTIN, JC .
ACTA METALLURGICA, 1980, 28 (03) :327-333
[18]  
Bruckner R., 1970, Journal of Non-Crystalline Solids, V5, P123, DOI 10.1016/0022-3093(70)90190-0
[19]   LOW-FREQUENCY MODES IN VITREOUS SILICA [J].
BUCHENAU, U ;
PRAGER, M ;
NUCKER, N ;
DIANOUX, AJ ;
AHMAD, N ;
PHILLIPS, WA .
PHYSICAL REVIEW B, 1986, 34 (08) :5665-5673
[20]   Molecular-dynamics study of incoherent quasielastic neutron-scattering spectra of supercooled water [J].
Chen, SH ;
Gallo, P ;
Sciortino, F ;
Tartaglia, P .
PHYSICAL REVIEW E, 1997, 56 (04) :4231-4243