Size dependence and associated formation mechanism of multiple-fold annealing twins in nanocrystalline Cu

被引:31
作者
Cao, Z. H. [1 ]
Xu, L. J. [1 ]
Sun, W. [2 ]
Shi, J. [1 ]
Wei, M. Z. [1 ]
Pan, G. J. [1 ]
Yang, X. B. [2 ]
Zhao, J. W. [2 ]
Meng, X. K. [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Inst Mat Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple-fold twins; Formation mechanism; Size effect; Nanocrystalline; Annealing; MOLECULAR-DYNAMICS SIMULATION; FIVEFOLD DEFORMATION TWINS; CENTERED-CUBIC METALS; GRAIN-GROWTH; MAXIMUM STRENGTH; RATE SENSITIVITY; FCC METALS; DISLOCATION; COPPER; NUCLEATION;
D O I
10.1016/j.actamat.2015.05.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The formation mechanisms and grain size dependence of annealing coherent multiple-fold twins, such as twofold and fivefold twins, were investigated in nanocrystalline Cu with zero applied stress by a combination of transmission electron microscopy and molecular dynamics (MD) simulation. It was found that the formation frequency of twofold and fivefold twins with coherent twin boundaries (CTB) increases with decreasing grain size (d), reaching a maximum frequency at the critical size of 35 nm, followed by a reduction at d < 35 nm. Numerous stacking faults (SFs) ribbons are also observed and associated with the formation of multiple-fold twins. Dislocation mediated grain rotation and SFs overlapping become the dominant formation mechanisms of multiple-fold twins, which are demonstrated by experiment and MD simulation. The competition between grain growth by GB migration and the transformation of GBs to intersectant CTBs via grain rotation causes the inverse grain size dependence. (C) 2015 Acts Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:312 / 323
页数:12
相关论文
共 71 条
[1]   Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films [J].
Amin-Ahmadi, B. ;
Idrissi, H. ;
Galceran, M. ;
Colla, M. S. ;
Raskin, J. P. ;
Pardoen, T. ;
Godet, S. ;
Schryvers, D. .
THIN SOLID FILMS, 2013, 539 :145-150
[2]   Epitaxial nanotwinned Cu films with high strength and high conductivity [J].
Anderoglu, O. ;
Misra, A. ;
Wang, H. ;
Ronning, F. ;
Hundley, M. F. ;
Zhang, X. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)
[3]   Indentation of nanotwinned fcc metals: Implications for nanotwin stability [J].
Bezares, Jiddu ;
Jiao, Shuyin ;
Liu, Yue ;
Bufford, Daniel ;
Lu, Lei ;
Zhang, Xinghang ;
Kulkarni, Yashashree ;
Asaro, Robert J. .
ACTA MATERIALIA, 2012, 60 (11) :4623-4635
[4]   Twinning propensity in nanocrystalline face-centered cubic, body-centered cubic, and hexagonal close-packed metals [J].
Boyko, V. S. ;
Kezerashvili, R. Ya. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2014, 75 (10) :1119-1123
[5]   Fivefold twin formation during annealing of nanocrystalline Cu [J].
Bringa, E. M. ;
Farkas, Diana ;
Caro, A. ;
Wang, Y. M. ;
McNaney, J. ;
Smith, R. .
SCRIPTA MATERIALIA, 2008, 59 (12) :1267-1270
[6]   In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries [J].
Bufford, D. ;
Liu, Y. ;
Wang, J. ;
Wang, H. ;
Zhang, X. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations [J].
Cao, A. J. ;
Wei, Y. G. .
APPLIED PHYSICS LETTERS, 2006, 89 (04)
[8]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[9]   Strength, strain-rate sensitivity and ductility of copper with nanoscale twins [J].
Dao, M. ;
Lu, L. ;
Shen, Y. F. ;
Suresh, S. .
ACTA MATERIALIA, 2006, 54 (20) :5421-5432
[10]   AN INVESTIGATION OF ORIGIN AND GROWTH OF ANNEALING TWINS [J].
DASH, S ;
BROWN, N .
ACTA METALLURGICA, 1963, 11 (09) :1067-&