Nanoparticles: potential biomarker harvesters

被引:31
作者
Geho, DH
Jones, CD
Petricoin, EF
Liotta, LA
机构
[1] George Mason Univ, Ctr Appl Proteom & Mol Med, Manassas, VA 20110 USA
[2] Sci Applicat Int Corp, GEO Ctr, R&D Ctr, Manassas, VA 20110 USA
关键词
D O I
10.1016/j.cbpa.2006.01.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A previously untapped bank of information resides within the low molecular weight proteomic fraction of blood. Intensive efforts are underway to harness this information so that it can be used for early diagnosis of diseases such as cancer. The physicochemical malleability and high surface areas of nanoparticle surfaces make them ideal candidates for developing biomarker harvesting platforms. Given the variety of engineering strategies afforded through nanoparticle technologies, a significant goal is to tailor nanoparticle surfaces to selectively bind a subset of biomarkers, sequestering them for later study using high sensitivity proteomic tests. To date, applications of nanoparticles have largely focused on imaging systems and drug delivery vectors. As such, biomarker harvesting is an underutilized application of nanoparticle technology and is an area of nanotechnology research that will likely undergo substantial growth.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 35 条
[1]   Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes [J].
Balthasar, S ;
Michaelis, K ;
Dinauer, N ;
von Briesen, H ;
Kreuter, J ;
Langer, K .
BIOMATERIALS, 2005, 26 (15) :2723-2732
[2]   Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles [J].
Bourges, JL ;
Gautier, SE ;
Delie, F ;
Bejjani, RA ;
Jeanny, JC ;
Gurny, R ;
BenEzra, D ;
Behar-Cohen, FF .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (08) :3562-3569
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[4]   Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles [J].
Cohen, H ;
Levy, RJ ;
Gao, J ;
Fishbein, I ;
Kousaev, V ;
Sosnowski, S ;
Slomkowski, S ;
Golomb, G .
GENE THERAPY, 2000, 7 (22) :1896-1905
[5]   Comparison of two methods of encapsulation of an oligonucleotide into poly(D,L-lactic acid) particles [J].
Delie, F ;
Berton, M ;
Allémann, E ;
Gurny, R .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2001, 214 (1-2) :25-30
[6]   Human plasma PeptideAtlas [J].
Deutsch, EW ;
Eng, JK ;
Zhang, H ;
King, NL ;
Nesvizhskii, AI ;
Lin, BY ;
Lee, HK ;
Yi, EC ;
Ossola, R ;
Aebersold, R .
PROTEOMICS, 2005, 5 (13) :3497-3500
[7]   Peptomer aluminum oxide nanoparticle conjugates as systemic and mucosal vaccine candidates: Synthesis and characterization of a conjugate derived from the C4 domain of HIV-1(MN) gp120 [J].
Frey, A ;
Neutra, MR ;
Robey, FA .
BIOCONJUGATE CHEMISTRY, 1997, 8 (03) :424-433
[8]   Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles [J].
Frey, A ;
Mantis, N ;
Kozlowski, PA ;
Quayle, AJ ;
Bajardi, A ;
Perdomo, JJ ;
Robey, FA ;
Neutra, MR .
VACCINE, 1999, 17 (23-24) :3007-3019
[9]   Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays [J].
Geho, D ;
Lahar, N ;
Gurnani, P ;
Huebschman, M ;
Herrmann, P ;
Espina, V ;
Shi, A ;
Wulfkuhle, J ;
Garner, H ;
Petricoin, E ;
Liotta, LA ;
Rosenblatt, KP .
BIOCONJUGATE CHEMISTRY, 2005, 16 (03) :559-566
[10]   Opportunities for nanotechnology-based innovation in tissue proteomics [J].
Geho, DH ;
Lahar, N ;
Ferrari, M ;
Petricoin, EF ;
Liotta, LA .
BIOMEDICAL MICRODEVICES, 2004, 6 (03) :231-239