Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models

被引:238
作者
Jayamanne, A
Greenwood, R
Mitchell, VA
Aslan, S
Piomelli, D
Vaughan, CW
机构
[1] Univ Sydney, Pain Management Res Inst, No Clin Sch, St Leonards, NSW, Australia
[2] Univ Calif Irvine, Dept Pharmacol, Irvine, CA 92717 USA
关键词
pain; neuropathic; inflammatory; cannabinoid; fatty-acid amide hydrolase;
D O I
10.1038/sj.bjp.0706510
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1 While cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central CB1 receptor-mediated motor and psychotropic side effects. The actions of endocannabinoids, such as anandamide are terminated by removal from the extracellular space, then subsequent enzymatic degradation by fatty-acid amide hydrolase ( FAAH). In the present study, we compared the effect of a selective FAAH inhibitor, URB597, to that of a pan-cannabinoid receptor agonist HU210 in rat models of chronic inflammatory and neuropathic pain. 2 Systemic administration of URB597 (0.3 mg kg(-1)) and HU210 (0.03 mg kg(-1)) both reduced the mechanical allodynia and thermal hyperalgesia in the CFA model of inflammatory pain. In contrast, HU210, but not URB597, reduced mechanical allodynia in the partial sciatic nerve-ligation model of neuropathic pain. HU210, but not URB597, produced a reduction in motor performance in unoperated rats. 3 The effects of URB597 in the CFA model were dose dependent and were reduced by coadministration with the cannabinoid CB1 antagonist AM251 (1 mg kg(-1)), or the CB2 and SR144528 (1 mg kg(-1)). Coadministration with AM251 plus SR144528 completely reversed the effects of URB597. 4 These findings suggest that the FAAH inhibitor URB597 produces cannabinoid CB1 and CB2 receptor-mediated analgesia in inflammatory pain states, without causing the undesirable side effects associated with cannabinoid receptor activation.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 58 条
[1]  
Adams IB, 1998, J PHARMACOL EXP THER, V284, P1209
[2]   Role of the endogenous cannabinoid system in the formalin test of persistent pain in the rat [J].
Beaulieu, P ;
Bisogno, T ;
Punwar, S ;
Farquhar-Smith, WP ;
Ambrosino, G ;
Di Marzo, V ;
Rice, ASC .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2000, 396 (2-3) :85-92
[3]   Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol [J].
Beltramo, M ;
Piomelli, D .
NEUROREPORT, 2000, 11 (06) :1231-1235
[4]   Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide [J].
Boger, DL ;
Sato, H ;
Lerner, AE ;
Hedrick, MP ;
Fecik, RA ;
Miyauchi, H ;
Wilkie, GD ;
Austin, BJ ;
Patricelli, MP ;
Cravatt, BF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5044-5049
[5]   The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain [J].
Bridges, D ;
Ahmad, K ;
Rice, ASC .
BRITISH JOURNAL OF PHARMACOLOGY, 2001, 133 (04) :586-594
[6]   Control of pain initiation by endogenous cannabinoids [J].
Calignano, A ;
La Rana, G ;
Giuffrida, A ;
Piomelli, D .
NATURE, 1998, 394 (6690) :277-281
[7]   Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization [J].
Carlton, SM ;
Coggeshall, RE .
NEUROSCIENCE LETTERS, 2001, 310 (01) :53-56
[8]   A structure-activity relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide hydrolase [J].
Cascio, MG ;
Minassi, A ;
Ligresti, A ;
Appendino, G ;
Burstein, S ;
Di Marzo, V .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 314 (01) :192-196
[9]   Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J].
Caterina, MJ ;
Leffler, A ;
Malmberg, AB ;
Martin, WJ ;
Trafton, J ;
Petersen-Zeitz, KR ;
Koltzenburg, M ;
Basbaum, AI ;
Julius, D .
SCIENCE, 2000, 288 (5464) :306-313
[10]   QUANTITATIVE ASSESSMENT OF TACTILE ALLODYNIA IN THE RAT PAW [J].
CHAPLAN, SR ;
BACH, FW ;
POGREL, JW ;
CHUNG, JM ;
YAKSH, TL .
JOURNAL OF NEUROSCIENCE METHODS, 1994, 53 (01) :55-63