Dopamine dilates the coronary, renal and other vascular beds; however, the signaling pathway underlying this effect is unclear. In this study the signal-transduction process mediating dopamine-induced relaxation of porcine coronary arteries was investigated in isolated vessels and single arterial myocytes. Dopamine-induced relaxation of arteries was mediated through the DA-1 receptor and involved K+ efflux, and subsequent patch-clamp studies demonstrated that either dopamine or fenoldopam, a selective DA-1 agonist, increased the opening probability of the large-conductance, calcium- and voltage-activated K+ (BKCa) channel in coronary myocytes. Moreover, blockade of this channel by iberiotoxin prevented dopamine-induced coronary relaxation, Dopamine stimulation of BKCa channels was completely prevented by a DA-1-receptor antagonist, but was unaffected by propranolol. Furthermore, inhibiting adenylyl cyclase activity prevented stimulation of BK,, channel activity? whereas chlorophenylthio (CPT)-cyclic adenosine monophosphate (AMP), a membrane permeable analog of cyclic AMP, mimicked the effects of dopamine. Interestingly, inhibiting the cyclic AMP-dependent protein kinase (PKA) did not affect the response to dopamine, whereas dopamine-induced channel activity was completely blocked by inhibiting the activity of the cyclic guanosine monophosphate (GMP)-dependent protein kinase (PKG). These findings demonstrate that activation of DA-1 receptors causes stimulation of BKCa channel activity by a mechanism involving cyclic AMP-dependent stimulation of PKG, but not PKA, and further suggest that this cross-reactivity mediates dopamine-induced coronary vasodilation.