A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution

被引:177
作者
Zhang, Guigang [1 ]
Wang, Xinchen [1 ]
机构
[1] Fuzhou Univ, Coll Chem & Chem Engn, Res Inst Photocatalysis, Fuzhou 35000Z, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Graphitic carbon nitride; Urea; Phenylurea; Water splitting; ARTIFICIAL PHOTOSYNTHESIS; WATER; SEMICONDUCTORS; OXIDATION;
D O I
10.1016/j.jcat.2013.07.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phenylurea has been integrated into the traditional polymerization route of carbon nitride (CN) precursors (e.g., urea, thiourea, dicyandiamide, and ammonium thiocyanide) in a facile one-pot approach, to modify the chemical composition, electronic structure, and catalytic performance of graphitic CN (g-CN). Results revealed that the co-polymerization of phenylurea with urea dramatically modifies the optical and electronic properties of g-CN, leading to a remarkable improvement by a factor of 9 in the photocatalytic activity of g-CN (when coupled with Pt as a co-catalyst) in an assay of hydrogen evolution reaction, while still keeping a high catalytic stability during pre-longed operations. The active catalyst is eventually a hybrid organocatalyst that is a heterogeneous Pt catalyst supported on a urea-based polymer. The promotional effect of phenylurea as the co-monomer for urea on the activity and stability of Pt/g-CN-could be related to the-extension-of delocalized pi-conjugated system of CN heterocycles, as a result of the fusion of phenyl motifs in the CN framework. The thus created surface dyadic structure favors the separation and migration of charge-carriers photoexcited upon light illumination. This work highlights a wide accessibility of chemical protocols for the design and synthesis of functional CN photocatalysts at molecular levels by applying suitable CN precursors and co-monomers. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:246 / 253
页数:8
相关论文
共 47 条
[1]   Sol-gel synthesis of a novel melon-SiO2 nanocomposite with photocatalytic activity [J].
Ang, Thiam Peng .
CATALYSIS COMMUNICATIONS, 2009, 10 (14) :1920-1924
[2]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[3]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[4]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[5]   Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis [J].
Cui, Yanjuan ;
Ding, Zhengxin ;
Fu, Xianzhi ;
Wang, Xinchen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (47) :11814-11818
[6]   Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution [J].
Cui, Yanjuan ;
Zhang, Jinshui ;
Zhang, Guigang ;
Huang, Jianhui ;
Liu, Ping ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (34) :13032-13039
[7]   Making Metal-Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light [J].
Di, Yan ;
Wang, Xinchen ;
Thomas, Arne ;
Antonietti, Markus .
CHEMCATCHEM, 2010, 2 (07) :834-838
[8]   Porous structure dependent photoreactivity of graphitic carbon nitride under visible light [J].
Dong, Guohui ;
Zhang, Lizhi .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) :1160-1166
[9]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[10]   Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor [J].
Gillan, EG .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3906-3912