Rutile (β-)MnO2 Surfaces and Vacancy Formation for High Electrochemical and Catalytic Performance

被引:186
作者
Tompsett, David A. [1 ]
Parker, Stephen C. [1 ]
Islam, M. Saiful [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
MANGANESE-OXIDE; OXYGEN REDUCTION; HYDROTHERMAL SYNTHESIS; CRYSTALLINE BETA-MNO2; ALPHA-MNO2; NANOWIRES; LITHIUM; MNO2; NANOSTRUCTURES; ELECTRODE; CARBON;
D O I
10.1021/ja4092962
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MnO2 is a technologically important material for energy storage and catalysis. Recent investigations have demonstrated the success of nanostructuring for improving the performance of rutile MnO2 in Li-ion batteries and supercapacitors and as a catalyst. Motivated by this we have investigated the stability and electronic structure of rutile (beta-)MnO2 surfaces using density functional theory. A Wulff construction from relaxed surface energies indicates a rod-like equilibrium morphology that is elongated along the c-axis, and is consistent with the large number of nanowire-type structures that are obtainable experimentally. The (110) surface dominates the crystallite surface area. Moreover, higher index surfaces than considered in previous work, for instance the (211) and (311) surfaces, are also expressed to cap the rod-like morphology. Broken coordinations at the surface result in enhanced magnetic moments at Mn sites that may play a role in catalytic activity. The calculated formation energies of oxygen vacancy defects and Mn reduction at key surfaces indicate facile formation at surfaces expressed in the equilibrium morphology. The formation energies are considerably lower than for comparable structures such as rutile TiO2 and are likely to be important to the high catalytic activity of rutile MnO2.
引用
收藏
页码:1418 / 1426
页数:9
相关论文
共 96 条
[21]   CATALYTIC BEHAVIOR OF NOBLE-METAL REDUCIBLE OXIDE MATERIALS FOR LOW-TEMPERATURE CO OXIDATION .1. COMPARISON OF CATALYST PERFORMANCE [J].
GARDNER, SD ;
HOFLUND, GB ;
SCHRYER, DR ;
SCHRYER, J ;
UPCHURCH, BT ;
KIELIN, EJ .
LANGMUIR, 1991, 7 (10) :2135-2139
[22]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[23]   Temperature dependent dielectric characterization of manganese dioxide nanostructures with different morphologies at low frequency [J].
Guan, Hongtao ;
Chen, Gang ;
Zhu, Jing ;
Wang, Yude .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 507 (01) :126-132
[24]  
Hill J. R., 2000, REV COMPUTATIONAL CH
[25]   AU/MNOX CATALYTIC PERFORMANCE-CHARACTERISTICS FOR LOW-TEMPERATURE CARBON-MONOXIDE OXIDATION [J].
HOFLUND, GB ;
GARDNER, SD ;
SCHRYER, DR ;
UPCHURCH, BT ;
KIELIN, EJ .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1995, 6 (02) :117-126
[26]   Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery [J].
Hummelshoj, J. S. ;
Blomqvist, J. ;
Datta, S. ;
Vegge, T. ;
Rossmeisl, J. ;
Thygesen, K. S. ;
Luntz, A. C. ;
Jacobsen, K. W. ;
Norskov, J. K. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (07)
[27]   Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties [J].
Islam, M. Saiful ;
Fisher, Craig A. J. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) :185-204
[28]   The effect of pH and anions on the anisotropic growth of MnO2 [J].
Ji, Zhong-Hai ;
Dong, Bin ;
Liu, Yun-Qi ;
Liu, Chen-Guang .
MATERIALS RESEARCH BULLETIN, 2012, 47 (11) :3377-3382
[29]   A simple one step approach to preparation of γ-MnOOH multipods and β-MnO2 nanorods [J].
Jia, Yanjin ;
Xu, Jian ;
Zhou, Lihui ;
Liu, Honglai ;
Hu, Ying .
MATERIALS LETTERS, 2008, 62 (8-9) :1336-1338
[30]   Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances [J].
Jiang, Hao ;
Sun, Ting ;
Li, Chunzhong ;
Ma, Jan .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (06) :2751-2756