Minireview:: Pharmacogenetics and beyond:: The interaction of therapeutic response, β-cell physiology, and genetics in diabetes

被引:79
作者
Hattersley, Andrew T.
Pearson, Ewan R.
机构
[1] Peninsula Med Sch, Exeter EX2 5DW, Devon, England
[2] Univ Dundee, Ninewells Hosp & Med Sch, Dundee DD1 9SY, Scotland
基金
英国惠康基金;
关键词
D O I
10.1210/en.2006-0152
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Defining the molecular genetics of diabetes gives new insight into the underlying etiology and so should help improve treatment. The genetic etiology is now known for most patients with beta-cell monogenic diabetes, allowing genetic classification. We review how this genetic knowledge alters treatment. Patients with a glucose-sensing beta-cell defect due to glucokinase mutations have regulated, mild, fasting hyperglycemia. Oral hypoglycemic agents or low-dose insulin rarely improve glycemic control. Patients with hepatic nuclear factor-1 alpha (HNF1 alpha) mutations have progressive beta-cell deterioration and require treatment. HNF1 alpha patients are 4 times more sensitive to sulfonylureas than matched type 2 diabetic patients. This is partly due to greater insulin secretion, reflecting the fact that the defect in HNF1 alpha deficiency precedes the K-ATP channel where sulfonylureas act. HNF1 beta is expressed in pancreatic stem cells before differentiation into endocrine or exocrine cells, so patients with HNF1 beta mutations have reduced pancreatic development, resulting in early-onset diabetes and exocrine dysfunction. These patients usually rapidly require insulin and are not sensitive to sulfonylureas. Thirty-five to 50% of patients diagnosed with diabetes before 6 months have a mutation in Kir6.2. The mutated K-ATP channel in these patients does not close in response to increased ATP concentrations, but can be closed when sulfonylureas bind to the sulfonylurea receptor 1 subunit of the channel by an ATP-independent route. These patients are usually insulin dependent, but have excellent glycemic control on high-dose sulfonylureas tablets. In conclusion, the defining of molecular genetic etiology in monogenic diabetes has identified several specific beta-cell defects, and these are critical in determining the response to treatment.
引用
收藏
页码:2657 / 2663
页数:7
相关论文
共 73 条
[51]   Preserved insulin response to tolbutamide in hepatocyte nuclear factor-1α mutation carriers [J].
Sagen, JV ;
Pearson, ER ;
Johansen, A ;
Spyer, G ;
Sovik, O ;
Pedersen, O ;
Njolstad, PR ;
Hattersley, AT ;
Hansen, T .
DIABETIC MEDICINE, 2005, 22 (04) :406-409
[52]   Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2 -: Patient characteristics and initial response to sulfonylurea therapy [J].
Sagen, JV ;
Ræder, H ;
Hathout, E ;
Shehadeh, N ;
Gudmundsson, K ;
Bævre, H ;
Abuelo, D ;
Phornphutkul, C ;
Molnes, J ;
Bell, GI ;
Gloyn, AL ;
Hattersley, AT ;
Molven, A ;
Sovik, O ;
Njolstad, PR .
DIABETES, 2004, 53 (10) :2713-2718
[53]   'I don't feel like a diabetic any more': the impact of stopping insulin in patients with maturity onset diabetes of the young following genetic testing [J].
Shepherd, M ;
Hattersley, AT .
CLINICAL MEDICINE, 2004, 4 (02) :144-147
[54]   No deterioration in glycemic control in HNF-1 α maturity-onset diabetes of the young following transfer from long term insulin to sulphonylureas [J].
Shepherd, M ;
Pearson, ER ;
Houghton, J ;
Salt, G ;
Ellard, S ;
Hattersley, AT .
DIABETES CARE, 2003, 26 (11) :3191-3192
[55]   Loss of HNF-1α function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism [J].
Shih, DQ ;
Screenan, S ;
Munoz, KN ;
Philipson, L ;
Pontoglio, M ;
Yaniv, M ;
Polonsky, KS ;
Stoffel, M .
DIABETES, 2001, 50 (11) :2472-2480
[56]   Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes:: New insights and new treatment [J].
Slingerland, AS ;
Hattersley, AT .
ANNALS OF MEDICINE, 2005, 37 (03) :186-195
[57]   Hyperexcitability to sulphonylurea in MODY3 [J].
Sovik, O ;
Njolstad, P ;
Folling, I ;
Sagen, J ;
Cockburn, BN ;
Bell, GI .
DIABETOLOGIA, 1998, 41 (05) :607-608
[58]   Influence of maternal and fetal glucokinase mutations in gestational diabetes [J].
Spyer, G ;
Hattersley, AT ;
Sykes, JE ;
Sturley, RH ;
MacLeod, KM .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2001, 185 (01) :240-241
[59]  
SPYER G, 2000, DIABETIC MED S, V17, pA40
[60]   β-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1α mutation carriers [J].
Stride, A ;
Ellard, S ;
Clark, P ;
Shakespeare, L ;
Salzmann, M ;
Shepherd, M ;
Hattersley, AT .
DIABETES CARE, 2005, 28 (07) :1751-1756