A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst

被引:1112
作者
Costentin, Cyrille [1 ]
Drouet, Samuel [1 ]
Robert, Marc [1 ]
Saveant, Jean-Michel [1 ]
机构
[1] Univ Paris Diderot, Lab Electrochim Mol, Unite Mixte Rech Univ CNRS 7591, F-75205 Paris 13, France
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; PALLADIUM COMPLEX; PORPHYRINS; CONVERSION;
D O I
10.1126/science.1224581
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical conversion of carbon dioxide (CO2) to carbon monoxide (CO) is a potentially useful step in the desirable transformation of the greenhouse gas to fuels and commodity chemicals. We have found that modification of iron tetraphenylporphyrin through the introduction of phenolic groups in all ortho and ortho' positions of the phenyl groups considerably speeds up catalysis of this reaction by the electrogenerated iron(0) complex. The catalyst, which uses one of the most earth-abundant metals, manifests a CO faradaic yield above 90% through 50 million turnovers over 4 hours of electrolysis at low overpotential (0.465 volt), with no observed degradation. The basis for the enhanced activity appears to be the high local concentration of protons associated with the phenolic hydroxyl substituents.
引用
收藏
页码:90 / 94
页数:5
相关论文
共 22 条
[1]  
Bard A.J., 1995, Standard Potentials in Aqueous Solution
[2]   ELECTROCATALYTIC REDUCTION OF CO2 BY NI CYCLAM2+ IN WATER - STUDY OF THE FACTORS AFFECTING THE EFFICIENCY AND THE SELECTIVITY OF THE PROCESS [J].
BELEY, M ;
COLLIN, JP ;
RUPPERT, R ;
SAUVAGE, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (24) :7461-7467
[3]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[4]   Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations [J].
Bhugun, I ;
Lexa, D ;
Saveant, JM .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (51) :19981-19985
[5]   ULTRAEFFICIENT SELECTIVE HOMOGENEOUS CATALYSIS OF THE ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE BY AN IRON(0) PORPHYRIN ASSOCIATED WITH A WEAK BRONSTED ACID COCATALYST [J].
BHUGUN, I ;
LEXA, D ;
SAVEANT, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (11) :5015-5016
[6]   Catalysis of the electrochemical reduction of carbon dioxide by iron(O) porphyrins: Synergystic effect of weak Bronsted acids [J].
Bhugun, I ;
Lexa, D ;
Saveant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (07) :1769-1776
[7]   [Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction [J].
Bourrez, Marc ;
Molton, Florian ;
Chardon-Noblat, Sylvie ;
Deronzier, Alain .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (42) :9903-9906
[8]   Electrocatalytic Oxygen Reduction by Iron Tetra-arylporphyrins Bearing Pendant Proton Relays [J].
Carver, Colin T. ;
Matson, Benjamin D. ;
Mayer, James M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) :5444-5447
[9]   Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes [J].
Chen, Zuofeng ;
Chen, Chuncheng ;
Weinberg, David R. ;
Kang, Peng ;
Concepcion, Javier J. ;
Harrison, Daniel P. ;
Brookhart, Maurice S. ;
Meyer, Thomas J. .
CHEMICAL COMMUNICATIONS, 2011, 47 (47) :12607-12609
[10]   Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights [J].
Cole, Emily Barton ;
Lakkaraju, Prasad S. ;
Rampulla, David M. ;
Morris, Amanda J. ;
Abelev, Esta ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (33) :11539-11551