A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model

被引:108
作者
Jiang, GJ
Knight, JL
机构
[1] UNIV WESTERN ONTARIO,DEPT ECON,SOCIAL SCI CTR,LONDON,ON N6A 5C2,CANADA
[2] UNIV GRONINGEN,NL-9700 AB GRONINGEN,NETHERLANDS
关键词
D O I
10.1017/S0266466600006101
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we propose a nonparametric identification and estimation procedure for an Ito diffusion process based on discrete sampling observations. The nonparametric kernel estimator for the diffusion function developed in this paper deals with general Ito diffusion processes and avoids any functional form specification for either the drift function or the diffusion function. It is shown that under certain regularity conditions the nonparametric diffusion function estimator is pointwise consistent and asymptotically follows a normal mixture distribution. Under stronger conditions, a consistent nonparametric estimator of the drift function is also derived based on the diffusion function estimator and the marginal density of the process, An application of the nonparametric technique to a short-term interest rate model involving Canadian daily 3-month treasury bill rates is also undertaken. The estimation results provide evidence for rejecting the common parametric or semiparametric specifications for both the drift and diffusion functions.
引用
收藏
页码:615 / 645
页数:31
相关论文
共 50 条
[31]  
Karlin S., 1981, 2 COURSE STOCHASTIC
[32]  
KNIGHT FB, 1976, LECT NOTES MATH, V190
[33]  
KUMAR TK, 1975, ESTIMATION PROBABILI
[34]  
Kutoyants YA, 1984, PARAMETER ESTIMATION
[35]   MINIMUM CONTRAST ESTIMATION IN DIFFUSION PROCESSES [J].
LANSKA, V .
JOURNAL OF APPLIED PROBABILITY, 1979, 16 (01) :65-75
[37]   STOCHASTIC-PROCESSES FOR INTEREST-RATES AND EQUILIBRIUM BOND PRICES [J].
MARSH, TA ;
ROSENFELD, ER .
JOURNAL OF FINANCE, 1983, 38 (02) :635-646
[38]   THEORY OF RATIONAL OPTION PRICING [J].
MERTON, RC .
BELL JOURNAL OF ECONOMICS, 1973, 4 (01) :141-183
[39]   A reappraisal of misspecified econometric models [J].
Monfort, A .
ECONOMETRIC THEORY, 1996, 12 (04) :597-619
[40]  
Oksendal B., 1992, Stochastic Differential Equations: An introduction with applications