The Herman-Kluk approximation: Derivation and semiclassical corrections

被引:99
作者
Kay, KG [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Herman-Kluk theory; semiclassical approximations; time-dependent propagator;
D O I
10.1016/j.chemphys.2005.06.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Herman-Kluk (HK) approximation for the propagator is derived semiclassically for a multidimensional system as an asymptotic solution of the Schrodinger equation. The propagator is obtained in the form of an expansion in h, in which the lowest-order term is the HK formula. Thus, the result extends the HK approximation to higher orders in h. Examination of the various terms shows that the expansion is a uniform asymptotic series and establishes the HK formula as a uniform semiclassical approximation. Successive terms in the series should allow one to improve the accuracy of the HK approximation for small h in a systematic and purely semiclassical manner, analogous to a higher-order WKB treatment of time-independent wave functions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 43 条
[1]   Using rays better. III. Error estimates and illustrative applications in smooth media [J].
Alonso, MA ;
Forbes, GW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (06) :1357-1370
[2]   New approach to semiclassical analysis in mechanics [J].
Alonso, MA ;
Forbes, GW .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) :1699-1718
[3]   A study of the semiclassical initial value representation at short times [J].
Ankerhold, J ;
Saltzer, M ;
Pollak, E .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (14) :5925-5932
[4]   Comment on 'semiclassical approximations in phase space with coherent states' [J].
Baranger, M ;
de Aguiar, MAM ;
Korsch, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (37) :9795-9796
[5]   Reply to 'Comment on "Semiclassical approximations in phase space with coherent states"' [J].
Baranger, M ;
de Aguiar, MAM ;
Keck, F ;
Korsch, HJ ;
Schellhaass, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44) :9493-9497
[6]   Semiclassical approximations in phase space with coherent states [J].
Baranger, M ;
de Aguiar, MAM ;
Keck, F ;
Korsch, HJ ;
Schellhaass, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (36) :7227-7286
[7]   The Wentzel-Brillouin-Kramers method of solving the wave equation [J].
Dunham, JL .
PHYSICAL REVIEW, 1932, 41 (06) :713-720
[8]   PHASE-INTEGRAL FORMULAS FOR LEVEL DENSITIES, NORMALIZATION FACTORS, AND QUANTAL EXPECTATION VALUES, NOT INVOLVING WAVE-FUNCTIONS [J].
FROMAN, N .
PHYSICAL REVIEW A, 1978, 17 (02) :493-504
[9]  
Goldstein H, 1980, CLASSICAL MECH
[10]   Comment on 'Semiclassical approximations in phase space with coherent states' [J].
Grossmann, F ;
Herman, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44) :9489-9492