Simulation of many-qubit quantum computation with matrix product states

被引:31
作者
Bañuls, MC
Orús, R
Latorre, JI
Pérez, A
Ruiz-Femenía, P
机构
[1] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain
[2] Univ Valencia, CSIC, IFIC, E-46100 Valencia, Spain
[3] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[4] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevA.73.022344
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Matrix product states provide a natural entanglement basis to represent a quantum register and operate quantum gates on it. This scheme can be materialized to simulate a quantum adiabatic algorithm solving hard instances of an NP-complete problem. Errors inherent to truncations of the exact action of interacting gates are controlled by the size of the matrices in the representation. The property of finding the right solution for an instance and the expected value of the energy (cost function) are found to be remarkably robust against these errors. As a symbolic example, we simulate the algorithm solving a 100-qubit hard instance, that is, finding the correct product state out of similar to 10(30) possibilities. Accumulated statistics for up to 60 qubits seem to point at a subexponential growth of the average minimum time to solve hard instances with highly truncated simulations of adiabatic quantum evolution.
引用
收藏
页数:6
相关论文
共 21 条
[1]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]   Experimental results on the crossover point in random 3-SAT [J].
Crawford, JM ;
Auton, LD .
ARTIFICIAL INTELLIGENCE, 1996, 81 (1-2) :31-57
[4]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[5]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[6]  
FARHI E, QUANTPH0104129
[7]  
FARHI E, QUANTPH0001106
[8]  
FARHI E, QUANTPH0208135
[9]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[10]   Adiabatic quantum computing for random satisfiability problems [J].
Hogg, T .
PHYSICAL REVIEW A, 2003, 67 (02) :7