Simulation of many-qubit quantum computation with matrix product states

被引:31
作者
Bañuls, MC
Orús, R
Latorre, JI
Pérez, A
Ruiz-Femenía, P
机构
[1] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain
[2] Univ Valencia, CSIC, IFIC, E-46100 Valencia, Spain
[3] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[4] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevA.73.022344
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Matrix product states provide a natural entanglement basis to represent a quantum register and operate quantum gates on it. This scheme can be materialized to simulate a quantum adiabatic algorithm solving hard instances of an NP-complete problem. Errors inherent to truncations of the exact action of interacting gates are controlled by the size of the matrices in the representation. The property of finding the right solution for an instance and the expected value of the energy (cost function) are found to be remarkably robust against these errors. As a symbolic example, we simulate the algorithm solving a 100-qubit hard instance, that is, finding the correct product state out of similar to 10(30) possibilities. Accumulated statistics for up to 60 qubits seem to point at a subexponential growth of the average minimum time to solve hard instances with highly truncated simulations of adiabatic quantum evolution.
引用
收藏
页数:6
相关论文
共 21 条
[11]   Adiabatic quantum computation and quantum phase transitions -: art. no. 062302 [J].
Latorre, JI ;
Orús, R .
PHYSICAL REVIEW A, 2004, 69 (06) :062302-1
[12]  
Latorre JI, 2004, QUANTUM INF COMPUT, V4, P48
[13]   Universality of entanglement and quantum-computation complexity -: art. no. 052308 [J].
Orús, R ;
Latorre, JI .
PHYSICAL REVIEW A, 2004, 69 (05) :052308-1
[14]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537
[15]   Renormalization-group transformations on quantum states [J].
Verstraete, F ;
Cirac, JI ;
Latorre, JI ;
Rico, E ;
Wolf, MM .
PHYSICAL REVIEW LETTERS, 2005, 94 (14)
[16]   Density matrix renormalization group and periodic boundary conditions: A quantum information perspective [J].
Verstraete, F ;
Porras, D ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2004, 93 (22)
[17]  
Verstraete F., CONDMAT0407066
[18]   Efficient simulation of one-dimensional quantum many-body systems [J].
Vidal, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :040502-1
[19]   Efficient classical simulation of slightly entangled quantum computations [J].
Vidal, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (14)
[20]   Entanglement in quantum critical phenomena [J].
Vidal, G ;
Latorre, JI ;
Rico, E ;
Kitaev, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (22) :4-227902