Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

被引:25
作者
van Boxtel, Ruben [1 ,2 ]
Toonen, Pim W. [1 ,2 ]
Verheul, Mark [1 ,2 ]
van Roekel, Henk S. [1 ,2 ]
Nijman, Isaac J. [1 ,2 ]
Guryev, Victor [1 ,2 ]
Cuppen, Edwin [1 ,2 ]
机构
[1] Royal Netherlands Acad Sci, Canc Genom Ctr, Hubrecht Inst Dev Biol & Stem Cell Res, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, NL-3584 CT Utrecht, Netherlands
关键词
D O I
10.1186/1471-2164-9-460
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results: As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by similar to 20%, resulting in an overall increase in efficiency of similar to 2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion: Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest.
引用
收藏
页数:10
相关论文
共 40 条
[21]   Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice [J].
Michaud, EJ ;
Culiat, CT ;
Klebig, ML ;
Barker, PE ;
Cain, KT ;
Carpenter, DJ ;
Easter, LL ;
Foster, CM ;
Gardner, AW ;
Guo, ZY ;
Houser, KJ ;
Hughes, LA ;
Kerley, MK ;
Liu, ZW ;
Olszewski, RE ;
Pinn, I ;
Shaw, GD ;
Shinpock, SG ;
Wymore, AM ;
Rinchik, EM ;
Johnson, DK .
BMC GENOMICS, 2005, 6 (1)
[22]   Generation of live rat offspring by intrauterine insemination with epididymal spermatozoa cryopreserved at-196°C [J].
Nakatsukasa, E ;
Inomata, T ;
Ikeda, T ;
Shino, M ;
Kashiwazaki, N .
REPRODUCTION, 2001, 122 (03) :463-467
[23]   PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing [J].
Nickerson, DA ;
Tobe, VO ;
Taylor, SL .
NUCLEIC ACIDS RESEARCH, 1997, 25 (14) :2745-2751
[24]   The mutagenic action of N-ethyl-N-nitrosourea in the mouse [J].
Noveroske, JK ;
Weber, JS ;
Justice, MJ .
MAMMALIAN GENOME, 2000, 11 (07) :478-483
[25]   Microarray-based genomic selection for high-throughput resequencing [J].
Okou, David T. ;
Steinberg, Karyn Meltz ;
Middle, Christina ;
Cutler, David J. ;
Albert, Thomas J. ;
Zwick, Michael E. .
NATURE METHODS, 2007, 4 (11) :907-909
[26]   A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus [J].
Perry, JA ;
Wang, TL ;
Welham, TJ ;
Gardner, S ;
Pike, JM ;
Yoshida, S ;
Parniske, M .
PLANT PHYSIOLOGY, 2003, 131 (03) :866-871
[27]   A gene-driven ENU-based approach to generating an allelic series in any gene [J].
Quwailid, MM ;
Hugill, A ;
Dear, N ;
Vizor, L ;
Wells, S ;
Horner, E ;
Fuller, S ;
Weedon, J ;
McMath, H ;
Woodman, P ;
Edwards, D ;
Campbell, D ;
Rodger, S ;
Carey, J ;
Roberts, A ;
Glenister, P ;
Lalanne, Z ;
Parkinson, N ;
Coghill, EL ;
McKeone, R ;
Cox, S ;
Willan, J ;
Greenfield, A ;
Keays, D ;
Brady, S ;
Spurr, N ;
Gray, I ;
Hunter, J ;
Brown, SDM ;
Cox, RD .
MAMMALIAN GENOME, 2004, 15 (08) :585-591
[28]  
Rozen S, 2000, Methods Mol Biol, V132, P365
[29]   Molecular characterization of ENU mouse mutagenesis and archives [J].
Sakuraba, Y ;
Sezutsu, H ;
Takahasi, KR ;
Tsuchihashi, K ;
Ichikawa, R ;
Fujimoto, N ;
Kaneko, S ;
Nakai, Y ;
Uchiyama, M ;
Goda, N ;
Motoi, R ;
Ikeda, A ;
Karashima, Y ;
Inoue, M ;
Kaneda, H ;
Masuya, H ;
Minowa, O ;
Noguchi, H ;
Toyoda, A ;
Sakaki, Y ;
Wakana, S ;
Noda, T ;
Shiroishi, T ;
Gondo, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 336 (02) :609-616
[30]  
Schuster SC, 2008, NAT METHODS, V5, P16, DOI [10.1038/nmeth1156, 10.1038/NMETH1156]