Ohmic Drop in LiFePO4 Based Lithium Battery Cathodes Containing Agglomerates

被引:20
作者
Cornut, R. [1 ]
Lepage, D. [1 ]
Schougaard, S. B. [1 ]
机构
[1] Univ Quebec Montreal, Dept Chem, Montreal, PQ H3C 3P8, Canada
关键词
ELECTRODE; CARBON; OPTIMIZATION; DISCHARGE; MODEL;
D O I
10.1149/2.081206jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In the present study, the importance of thorough active material and carbon mixing for the performance of LiFePO4 based electrodes was investigated experimentally and theoretically. A simple transformation of experimental data was introduced to identify the portion of the discharge curves that corresponds to an ohmic response. This section of the experimental data was subsequently modeled using a local Ohm's law to describe the transport in different media, including agglomerates. From the fitted data, it was shown that the mixing procedure has a profound effect on agglomerate size and size polydispersity. Further, an analytical approximation of the discharge curves integrating the agglomerates transport parameter and size distribution broadness was proposed in order to facilitate future comparison between experiments and model. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.081206jes] All rights reserved.
引用
收藏
页码:A822 / A827
页数:6
相关论文
共 29 条
[1]   A Multiscale Description of the Electronic Transport within the Hierarchical Architecture of a Composite Electrode for Lithium Batteries [J].
Badot, Jean-Claude ;
Ligneel, Eric ;
Dubrunfaut, Olivier ;
Guyomard, Dominigue ;
Lestriez, Bernard .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (17) :2749-2758
[2]   Confirmation of the Domino-Cascade Model by LiFePO4/FePO4 Precession Electron Diffraction [J].
Brunetti, G. ;
Robert, D. ;
Bayle-Guillemaud, P. ;
Rouviere, J. L. ;
Rauch, E. F. ;
Martin, J. F. ;
Colin, J. F. ;
Bertin, F. ;
Cayron, C. .
CHEMISTRY OF MATERIALS, 2011, 23 (20) :4515-4524
[3]   Selection of conductive additives in Li-ion battery cathodes - A numerical study [J].
Chen, Y.-H. ;
Wang, C.-W. ;
Liu, G. ;
Song, X.-Y. ;
Battaglia, V. S. ;
Sastry, A. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A978-A986
[4]   Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials [J].
Chen, Y. -H. ;
Wang, C. -W. ;
Zhang, X. ;
Sastry, A. M. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2851-2862
[5]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[6]   Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries [J].
Colclasure, Andrew M. ;
Kee, Robert J. .
ELECTROCHIMICA ACTA, 2010, 55 (28) :8960-8973
[7]   Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model [J].
Dargaville, S. ;
Farrell, T. W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A830-A840
[8]   Modeling a porous intercalation electrode with two characteristic particle sizes [J].
Darling, R ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4201-4208
[9]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[10]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671