Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion

被引:116
作者
Beard, Matthew C. [1 ]
Ellingson, Randy J. [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
D O I
10.1002/lpor.200810013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Within the range of photon energies illuminating the Earth's surface, absorption of a photon by a conventional photovoltaic semiconductor device results in the production of a single electron-hole pair; energy of a photon in excess of the semiconductor's bandgap is efficiently converted to heat through electron and hole interactions with the crystal lattice. Recently, colloidal semiconductor nanocrystals and nanocrystal films have been shown to exhibit efficient multiple electron-hole pair generation from a single photon with energy greater than twice the effective band gap. This multiple carrier pair process, referred to as multiple exciton generation (MEG), represents one route to reducing the thermal loss in semiconductor solar cells and may lead to the development of low cost, high efficiency solar energy devices. We review the current experimental and theoretical understanding of MEG, and provide views to the near-term future for both fundamental research and the development of working devices which exploit MEG.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 98 条
[1]   Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence [J].
Aharoni, A ;
Mokari, T ;
Popov, I ;
Banin, U .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (01) :257-264
[2]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[3]   Role of impact ionization in multiple exciton generation in PbSe nanocrystals [J].
Allan, G. ;
Delerue, C. .
PHYSICAL REVIEW B, 2006, 73 (20)
[4]   Stochastic models of charge carrier dynamics in semiconducting nanosystems [J].
Barzykin, A. V. ;
Tachiya, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (06)
[5]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[6]   On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots [J].
Ben-Lulu, Meirav ;
Mocatta, David ;
Bonn, Mischa ;
Banin, Uri ;
Ruhman, Sanford .
NANO LETTERS, 2008, 8 (04) :1207-1211
[7]   Electron relaxation in colloidal InP quantum dots with photogenerated excitons or chemically injected electrons [J].
Blackburn, JL ;
Ellingson, RJ ;
Micic, OI ;
Nozik, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (01) :102-109
[9]   Absolute silicon photodiodes for 160 nm to 254 nm photons [J].
Canfield, LR ;
Vest, RE ;
Korde, R ;
Schmidtke, H ;
Desor, R .
METROLOGIA, 1998, 35 (04) :329-334
[10]   Sr3B2O6:Ce3+,Eu2+:: A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes [J].
Chang, Chun-Kuei ;
Chen, Teng-Ming .
APPLIED PHYSICS LETTERS, 2007, 91 (08)