Riddling of chaotic sets in periodic windows

被引:24
作者
Lai, YC [1 ]
Grebogi, C
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Math, Inst Plasma Res, College Pk, MD 20742 USA
[4] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
D O I
10.1103/PhysRevLett.83.2926
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Previous investigations of riddling have focused on the case when the dynamical invariant set in the symmetric invariant manifold of the system is a chaotic attractor. A situation expected to arise commonly in physical systems, however, is that the dynamics in the invariant manifold is in a periodic window. We argue and demonstrate that riddling can be more pervasive in this case because it can occur regardless of whether the chaotic set in the invariant manifold is transversly stable or unstable. Scaling behavior associated with this type of riddling is analyzed and is supported by numerical experiments.
引用
收藏
页码:2926 / 2929
页数:4
相关论文
共 23 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   Transverse instability for non-normal parameters [J].
Ashwin, P ;
Covas, E ;
Tavakol, R .
NONLINEARITY, 1999, 12 (03) :563-577
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[5]   Generic hyperbolicity in the logistic family [J].
Graczyk, J ;
Swiatek, G .
ANNALS OF MATHEMATICS, 1997, 146 (01) :1-52
[6]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[7]  
HAO BL, 1996, STATPHYS, V19
[8]   SHORT-WAVELENGTH BIFURCATIONS AND SIZE INSTABILITIES IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4185-4188
[9]   EXPERIMENTAL AND NUMERICAL EVIDENCE FOR RIDDLED BASINS IN COUPLED CHAOTIC SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW LETTERS, 1994, 73 (26) :3528-3531
[10]   SYNCHRONOUS CHAOS IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1994, 50 (03) :1874-1885