Correlation decay and return time statistics

被引:25
作者
Artuso, R
机构
[1] Univ Milan, Ist Nazl Fis Mat, Sez Milano, I-20122 Milan, Italy
[2] Int Ctr Study Dynam Syst, I-22100 Como, Italy
关键词
D O I
10.1016/S0167-2789(98)00219-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the general problem of possible modes of correlation decay for low-dimensional dynamical systems: in particular we focus on systems lacking full hyperbolicity, where typically power laws occur. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 66 条
[11]  
ARTUSO R, UNPUB
[12]  
Baker George A., 1990, QUANTITATIVE THEORY
[13]   Resonances for intermittent systems [J].
Baladi, V. ;
Eckmann, J-P ;
Ruelle, D. .
NONLINEARITY, 1989, 2 (01) :119-135
[14]  
BALADI V, 1997, DMV SEM 27 CLASS NON, P3
[15]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL PERIODIC LORENTZ GAS WITH INFINITE HORIZON [J].
BLEHER, PM .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :315-373
[16]  
Bunimovich L. A., 1985, Soviet Physics - JETP, V62, P842
[17]  
CAMPANINO M, IN PRESS FORUM MATH
[18]  
CHANNON SR, 1980, ANN NY ACAD SCI, V357, P108
[19]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[20]  
CHIRIKOV BV, 1984, P 9 INT C NONL OSC K, V2, P421