Mutation of a gene in the fungus Leptosphaeria maculans allows increased frequency of penetration of stomatal apertures of Arabidopsis thaliana

被引:21
作者
Elliott, Candace E. [1 ]
Harjono [1 ]
Howlett, Barbara J. [1 ]
机构
[1] Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia
关键词
D O I
10.1093/mp/ssn014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leptosphaeria maculans, a pathogen of Brassica napus, is unable to invade most wild-type accessions of Arabidopsis thaliana, although several mutants are susceptible. The infection pathway of L. maculans via a non-invasive inoculation method on A. thaliana lms1 (undefined), pmr4-1 (defective in callose deposition), and pen1-1 and pen2-1 (defective in non-host responses to several pathogens) mutants is described. On wild types Col-0 and Ler-0, hyphae are generally arrested at stomatal apertures. A T-DNA insertional mutant of L. maculans (A22) that penetrates stomatal apertures of Col-0 and Ler-0 five to seven times more often than the wild-type isolate is described. The higher penetration frequency of isolate A22 is associated with an increased hypersensitive response, which includes callose deposition. Complementation analysis showed that the phenotype of this isolate is due to T-DNA insertion in an intronless gene denoted as ipa (increased penetration on Arabidopsis). This gene is predicted to encode a protein of 702 amino acids with best matches to hypothetical proteins in other filamentous ascomycetes. The ipa gene is expressed in the wild-type isolate at low levels in culture and during infection of A. thaliana and B. napus.
引用
收藏
页码:471 / 481
页数:11
相关论文
共 40 条
[1]   ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis [J].
Adie, Bruce A. T. ;
Perez-Perez, Julian ;
Perez-Perez, Manuel M. ;
Godoy, Marta ;
Sanchez-Serrano, Jose-J. ;
Schmelz, Eric A. ;
Solano, Roberto .
PLANT CELL, 2007, 19 (05) :1665-1681
[2]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[3]   Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem:: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling [J].
Bohman, S ;
Staal, J ;
Thomma, BPHJ ;
Wang, ML ;
Dixelius, C .
PLANT JOURNAL, 2004, 37 (01) :9-20
[4]   The ProDom database of protein domain families: more emphasis on 3D [J].
Bru, C ;
Courcelle, E ;
Carrre, S ;
Beausse, Y ;
Dalmar, S ;
Kahn, D .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D212-D215
[5]   Rapid necrosis of guard cells is associated with the arrest of fungal growth in leaves of Indian mustard (Brassica juncea) inoculated with avirulent isolates of Leptosphaeria maculans [J].
Chen, CY ;
Howlett, BJ .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1996, 48 (02) :73-81
[6]  
CLAROS MG, 1994, COMPUT APPL BIOSCI, V10, P685
[7]   SNARE-protein-mediated disease resistance at the plant cell wall [J].
Collins, NC ;
Thordal-Christensen, H ;
Lipka, V ;
Bau, S ;
Kombrink, E ;
Qiu, JL ;
Hückelhoven, R ;
Stein, M ;
Freialdenhoven, A ;
Somerville, SC ;
Schulze-Lefert, P .
NATURE, 2003, 425 (6961) :973-977
[8]   On filtering false positive transmembrane protein predictions [J].
Cserzö, M ;
Eisenhaber, F ;
Eisenhaber, B ;
Simon, I .
PROTEIN ENGINEERING, 2002, 15 (09) :745-752
[9]   Overexpression of a 3-ketoacyl-CoA thiolase in Leptosphaeria maculans causes reduced pathogenicity on Brassica napus [J].
Elliott, Candace E. ;
Howlett, Barbara J. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (06) :588-596
[10]   Pfam:: clans, web tools and services [J].
Finn, Robert D. ;
Mistry, Jaina ;
Schuster-Bockler, Benjamin ;
Griffiths-Jones, Sam ;
Hollich, Volker ;
Lassmann, Timo ;
Moxon, Simon ;
Marshall, Mhairi ;
Khanna, Ajay ;
Durbin, Richard ;
Eddy, Sean R. ;
Sonnhammer, Erik L. L. ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D247-D251